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ORJIP Offshore Wind 

The Offshore Renewables Joint Industry Programme (ORJIP) for Offshore Wind is a collaborative initiative 

that aims to: 

• Fund research to improve our understanding of the effects of offshore wind on the marine 

environment 

• Reduce the risk of not getting, or delaying consent for, offshore wind developments 

• Reduce the risk of getting consent with conditions that reduce viability of the project. 

The programme pools resources from the private sector and public sector bodies to fund projects that 

provide empirical data to support consenting authorities in evaluating the environmental risk of offshore 

wind. Projects are prioritised and informed by the ORJIP Advisory Network which includes key 

stakeholders, including statutory nature conservation bodies, academics, non-governmental 

organisations and others. 

The current stage is a collaboration between The Carbon Trust, EDF Energy Renewables Limited, Ocean 

Winds UK Limited, Equinor ASA, Ørsted Power (UK) Limited, RWE Offshore Wind GmbH, Shell Global 

Solutions International B.V., SSE Renewables Services (UK) Limited, TotalEnergies OneTech, Crown Estate 

Scotland, Scottish Government (acting through the Offshore Wind Directorate and the Marine Directorate), 

and The Crown Estate Commissioners.  

For further information regarding the ORJIP Offshore Wind programme, please refer to the Carbon Trust 

website, or contact Ivan Savitsky (ivan.savitsky@carbontrust.com) and Žilvinas Valantiejus 

(zilvinas.valantiejus@carbontrust.com). 
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Who we are 

Our mission is to accelerate the move to a decarbonised future.  

We have been climate pioneers for more than 20 years, partnering with leading businesses, 

governments and financial institutions globally. From strategic planning and target setting to activation 

and communication - we are your expert guide to turn your climate ambition into impact.  

https://www.carbontrust.com/our-projects/offshore-renewables-joint-industry-programme-orjip-for-offshore-wind
https://www.carbontrust.com/our-projects/offshore-renewables-joint-industry-programme-orjip-for-offshore-wind
mailto:ivan.savitsky@carbontrust.com
mailto:zilvinas.valantiejus@carbontrust.com
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We are one global network of 400 experts with offices in the UK, the Netherlands, South Africa, China, 

Singapore and Mexico. To date, we have helped set 200+ science-based targets and guided 3,000+ 

organisations in 70 countries on their route to Net Zero. 
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1. Introduction 

Within the environmental impact assessment process for offshore wind farms (OWFs) and marine 

birds, legislation requires an understanding of the potential connectivity between designated 

protected populations (Special Protection Areas, SPAs) and OWFs, and the magnitude of potential 

impacts from specific effects, such as collision risk. At-sea survey data (e.g. boat or aerial surveys) 

forms the basis for assessing baseline spatial abundance and distribution of seabirds within a wind 

farm footprint and the surrounding area. Tagging birds from breeding colonies provides a 

complimentary method for estimating spatial abundance of birds of known provenance. To assess 

the impacts of offshore renewables upon SPAs for all types of data, it is necessary to estimate the 

percentage of birds that may originate from each SPA, termed apportioning. That way, the potential 

numbers of birds impacted by specific effects can be ascribed to SPAs through potential connective 

pathways. However, there are many methods of deriving such apportioning (Table 1), and they vary by 

the type of data used at the outset and vary in complexity and assumptions used. These methods 

may also vary in application potential for specific bird species, and have also been the subject of 

specific workshops for targeted groups of species, such as gulls (e.g. Quinn 2019).    

In general, apportioning relies on being able to estimate (a) the size of each breeding colony and (b) 

the spatial distribution (e.g. utilisation distribution; UD) of the birds from each colony, because the 

proportion of birds originating from each colony will be dependent on the product of the colony size 

and the estimated spatial distribution of birds from that colony. Apportioning methods differ largely 

based on the sources of data and statistical methods used to estimate colony-specific spatial 

distributions. 

There are broadly five different approaches that are currently available:  

a. Scottish Natural Heritage (SNH, now NatureScot) Apportioning Tool 

b. Marine Scotland Science (MSS) Apportioning Tool 

c. New methods using Global Positioning System (GPS) tracking data in a radial time-distance 
function approach 

d. Biological Defined Meaningful Population Scales (BDMPS) 

e. New methods for the non-breeding season based on light-level Geolocation (GLS) data 

These are outlined below in Table 1. The SNH apportioning tool is split into two separate evaluations 

since a further update of the model has been developed, so the total number of methods considered is 

six (see Table 1).  Here, we carry out a full appraisal of each method, assess the advantages and 

disadvantages of each and assess data requirements and availability.   
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Table 1. Summary of the main methods of apportioning. 

Tool Season Methodology 

Scottish 
Natural 
Heritage 
Apportioning 
Tool (SNH 
2014) 

Breeding The proportion of birds that originate from each colony, at a 
particular at-sea location, is proportional to size of the colony 
(total number of breeding pairs) multiplied by the inverse of the 
squared distance between the point and  the colony, based upon 
the great circle distance between the point and colony. 

Scottish 
Natural 
Heritage 
Apportioning 
Tool (SNH 
2018) 

Breeding The proportion of birds that originate from each colony, at a particular 
at-sea location, is proportional to size of the colony (total number of 
breeding pairs) multiplied by the inverse of the squared distance 
between the point and the colony, based upon the shortest distance by 
sea, reflecting the fact that most seabird species avoid flying over 
land. 

Marine 
Scotland 
Science 
Apportioning 
Tool (Butler et 
al. 2020) 

Breeding 

and non-

breeding 

GPS tracking data allow us to avoid assuming that bird densities 
decay in proportion to inverse distance squared, and to estimate 
this relationship empirically, and also allows other spatial 
characteristics of bird behaviour (e.g. habitat association) to be 
estimated and accounted for. The MSS Apportioning Tool uses the 
maps produced by Wakefield et al. (2017) from multi-colony GPS 
tracking data to estimate apportioning percentages for every cell on 
a relatively fine spatial grid that covers the entire UK Exclusive 
Economic Zone (EEZ). 

Sage 2022 Breeding Uses a time-distance approach in radial bands away from the colony 
that in turn can be used to quantify the number of birds that may use 
an OWF and that can then be ascribed back to breeding colonies; 
application on gulls has allowed assessment for offshore/onshore 
contexts. Generalisable at the species level and has application for 
theoretical evaluation of impacts of wind farms apportioned to 
colonies, building on the SNH method.  

Biologically 
Defined 
Meaningful 
Population 
Scales 
(Furness 
2015) 

Non- 
breeding 

Combines knowledge about the distribution of birds outside the 
breeding season gained from a range of data sources such as ringing 
recovery data, and to a lesser extent GPS tracking to apportion birds 
to SPA populations based on the relative sizes of the populations 
wintering in UK waters and, the size of the population within each 
SPA. 

New GLS 
methods 

Non- 
breeding 

Light-level GLS data offer the opportunity to characterise area use 
and occupancy of species for adults and immatures during the non-
breeding season part of the annual cycle, and using kernel density 
and overlap approaches, allowing further apportioning to potential 
colonies of origin. 
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2. Details of the approaches 

Scottish Natural Heritage Apportioning Tool (SNH 2014, 2018) 

Background 

This rule-based tool was developed by SNH (now NatureScot) based on the principle that breeding 

season area usage of seabirds is limited by central place foraging constraints of individuals, and 

therefore can be determined by use of foraging ranges of seabird species (Thaxter et al. 2012). In turn, 

the relative proportional number of individuals and their connectivity to SPAs can be estimated using a 

theoretical approach based on three key pieces of information: the size of colonies, the area within 

foraging range that is sea, and distance, either Euclidean (SNH 2014, presented below) or shortest sea 

route upon later revision of implicit assumptions of travel constraints of seabirds over land (SNH 2018). 

The proportion of birds at location i that arise from colony j will be proportional to (SNH 2014): 

(Size of colony j) * (1 - proportion of the area within the foraging range of colony j that is sea) / 

(Distance from location i to colony j)2 

[Equation 1] 

The tool therefore uses three weighting factors: the size of the colony, the distance of the colony from 

a development, and the sea area. Colonies with greater populations will contribute more individual 

hypothetical birds to the assumed distribution in the area and thus the birds recorded within a survey 

of an OWF site will proportionally assign more individuals back to larger populations. Distance 

measurement is taken from the centre of an OWF to the centre of colonies, but it is acknowledged that 

complexities may arise in boundary issues; further, the inverse-squared distance weighting factor 

relates to expected declines over proportional area increase, with a further revised assumption included 

in SNH (2018) with improved realism whereby distance is calculated as the nearest straight-line over-

sea distance. 

Strengths and weaknesses 

As noted by Butler et al. (2020), the SNH apportioning tools have no minimum data requirements, 

making them attractive for the study of large numbers of colonies across all breeding seabird species, 

and are very straightforward to apply, thus also representing cost-savings. The use of the method 

across all species is an advantage as more detailed methods such as the MSS approach may require 

tracking data that may not be feasible for some species.  However, they suffer from a lack of biological 

realism, making strong assumptions; i.e. the lack of use of empirical data therefore assumes all 

populations have the same distance-decay function over space, and further do not account for effects 

of competition between neighbouring colonies and environmental heterogeneity that may influence 

space use within foraging range of species, i.e. homogenous species distributions are assumed. Many 

of these aspects are acknowledged in the approach documentation, hence the advice has therefore 

been for this approach to be used until a more complex, evidence-based model is developed (SNH 

2018). 

In the absence of GPS tracking data, however, it is still possible to extend the SNH Apportioning Tool 

so that it estimates the rate of decay of bird density with distance empirically for each species, using 
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published foraging ranges, rather than fixing densities to always decay in proportion to inverse distance 

squared. This is a worthwhile task because further studies have found that the effect of distance to 

colony is crucial in determining the spatial distribution of seabirds during the breeding season (e.g. 

Wakefield et al., 2017), and systematic biases in quantifying the relationship between bird density and 

distance to colony will therefore lead to substantial errors in the calculation of apportioning 

percentages. More recent estimates of foraging ranges are also now available (Woodward et al., 2019), 

and these can be used to estimate the rate of decay with distance for each species and extend the SNH 

Apportioning Tool to use these estimated decay rates, as opposed to a flat 1/distance^2 fixed rate. The 

SNH Apportioning Tool further assumes that foraging ranges are the same for all colonies, but 

estimates of inter-colony variations in foraging ranges are also now available (Woodward et al. 2019), 

making it also possible to extend the tool to quantify the uncertainty in apportioning percentage that 

results from inter-colony variability in foraging range, using a simple simulation-based approach (MS 

SEANSE project; Searle et al. 2020). 

Data requirements and availability 

As mentioned, the method does not require extensive detailed data, and can be parametrised just with 

information on species foraging range and the size of individual colonies. The former foraging range 

information is available from reviews for many UK species using Thaxter et al. (2012) or more recent 

updates from Woodward et al. (2019). Colony size information for seabirds is available from the JNCC 

Seabird Monitoring Programme (SMP). As is common with all methods, it is important to make sure 

the eventual colony dataset upon which the apportioning is made is current and robust. To assess true 

distance decay functions within this approach, colony-specific tracking data can be used, constituting 

a further data requirement if such precision of the decay function is required.  

Marine Scotland Science Apportioning Tool (Butler et al. 2020) 

Background 

The MSS Apportioning Tool provides an alternative to the SNH Apportioning Tool. This method (see 

Butler et al. 2020), introduces an R interface to a habitat-association modelling approach using species 

tracking data based on the method of Wakefield et al. (2017), thus, the MSS Apportioning Tool uses an 

empirical modelling approach based on these habitat use models. The Wakefield statistical method 

uses a weighted Poisson generalised linear mixed effects model (GLMM), considered to be cutting-

edge – see Butler et al. (2020) for further appraisal of the method itself. At present the model is 

available for four species of seabird (European shag Phalacrocorax aristotelis, black-legged kittiwake 

Rissa tridactyla, common guillemot Uria aalge, razorbill, Alca torda), and as such these statistical 

environmental associations have already been determined, and thus the Poisson GLMM can be used 

to calculate apportioned percentages of birds for each colony and spatial location. The MSS 

Apportioning Tool therefore carries the same assumptions as the Wakefield method, that the colony-

specific utilisation distribution (proportion of birds from colony j in area i) is a mathematical function 

of accessibility (e.g. distance to colony), neighbouring competition, and further environmental variables 

that may drive concentrations in distributions. As noted by Butler et al. (2020), the proportion of birds 

in area i that originate from colony j can be represented as: 
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(Proportion of birds from colony j within area i) * size of colony j  

[Equation 2] 

re-normalised to sum to 1 across all colonies. 

The method also encompasses ‘sub-methods’ here termed variants that make novel improvements on 

the original Wakefield approach, i.e. here defined as the same as the original paper using the same 

data, but with the MSS apportioning extension applied; the UCC variant extends this further, by including 

more recent population data, as Wakefield et al. (2017) relied on Seabird 2000. For this ‘UCC’ model 

variant, Butler et al. (2020) use either more recent data or imputed counts (where more recent data are 

not available), and although for the four species considered there have been some notable population 

changes, agreement between the original Wakefield model and UCC models was high. A further variant 

considered non-breeding as well as breeding birds (BNB) by including spatial survey data to estimate 

distribution (Waggitt et al. 2020). The BNB variant performed relatively well, for example showing fairly 

good agreement with the Wakefield method through application of the models to independent datasets, 

but notable differences emerged; these were particularly driven through the different relationships over 

age classes between spatial distribution and distance to the colony, i.e. immature birds may or may not 

be similarly distributed to adults over distance, which was also species-specific with varying results 

among different species. Further issues with the BNB model variant arise due to the lack of 

comparability in the different data sources of GPS and at-sea data used as well as temporal mismatch 

in data sources. To rule out potential error, however, it was concluded as meriting further investigation 

pending more work (Butler et al. 2020). 

Strengths and weaknesses 

An advantage of the MSS approach is that it accounts for species- and colony-specific habitat use, 

informed by the environmental availability of each colony. This makes the eventual assignment of 

number of individual animals back to colonies more realistic by incorporating mechanistic linkages to 

explain habitat use based on environmental (prey-proxy) drivers and interactions. The method brings in 

important determinants of at-sea usage above that of simply population size, including the distance to 

conspecific populations within and between species, accounting for density-dependent sympatric and 

parapatric competition effects. Further, the method can incorporate the distribution of non-breeders 

during the breeding season if using the BNB variant of the model, combining different data sources, but 

that also includes further processing of at-sea datasets and is dependent on their availability. Of note 

is that the MSS tool (Butler et al. 2020) was concerned with calculating, for a given location, the 

percentage of birds present that come from sites for each species, and thus estimated the ‘relative’ 

numbers of birds potentially originating from each site.  

However, a disadvantage is that the tool, and the maps that underpin it, is currently only available for 

the four species as outlined above. The MSS tool may need to be applied to these same species but 

incorporating more recent tracking data, which may alter the habitat relationships observed and the 

outcome of the apportioning. Alternatively, new species may need to be considered that may require 

different covariate information that underpins the habitat association or different model structure. 

Newer (i.e. updated) covariate information may also need to replace existing data within the original 

model. Any further use of the tool for more recent data or different species would involve re-building of 

the Wakefield model and statistical relationships for further use in the MSS tool. However, building the 

modelling framework ‘from scratch’ represents potentially very high time-effort overheads in data 
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acquisition (which may be in the region of terabytes of data processing from new remote sensing 

datasets), model set-up, and importantly computational run-time costs. As acknowledged by Butler et 

al. (2020), the existing tool already has extensive resolution and a large amount of information to run 

the R interface. Wakefield et al. (2017) also acknowledge computer run-time to have been an issue in 

the development of the models underpinning the MSS tool, and state a number of experimental phases 

that were carried out in a stage-wise manner before settling on the final methodology; whether such 

steps would be needed for completely fresh data, or even a variation of the underlying statistical model 

itself, is at present unknown. Finally, the method, to date, has only been applied to species with relatively 

short tracking durations within the breeding season, and it is unknown how extensive the modelling 

may be with longer duration datasets and those that span multiple years for the same individuals, thus 

likely requiring appraisal of the statistical assumptions underpinning parts of the model. Further use of 

variants of the MSS model to incorporate distribution of non-breeding individuals during the breeding 

season would require further sourcing of at-sea data for those species, which may also require 

extensive collation. The BNB variant of the model also assumes the ratio of breeders to non-breeders 

is constant across all colonies; the ratio is related to the demography and population structures of the 

populations, likely to differ between increasing and declining colonies, for example. Further, the method 

assumes the same explanatory environmental covariates are used for both population components.  

A further current drawback of the MSS tool and the Wakefield method is the tracking data underpinning 

the modelling relate to area used for all behaviours, which also includes travelling (commuting) to and 

from a central place (breeding colony) and resting as well as the likely key behaviour of interest 

‘foraging’ that may be most closely associated with habitat/covariates modelled. As such the models 

may not properly capture the functional drivers of the spatial distribution. This could easily be rectified 

by re-running the models but only using the foraging locations, as assessed through additional sensors 

such as time-depth recorders, or movement modelling approaches such as Hidden Markov Models.   

The MSS approach outlines two sources of uncertainty from (a) the overall percentage apportioning 

values (i.e. % birds from a given colony in space in relation to the total number expected for all colonies), 

associated with the number of breeding birds (colony sizes), and the estimated UDs, and (b) given the 

percentages, the uncertainty associated with a given sample of birds of particular size that feeds into 

the calculations. The latter was addressed by simulation and re-estimation of percentages for varying 

sample sizes of birds to give a 95% confidence interval. However, the former (a) above, could not fully 

be accounted for; as stated by Butler et al. (2000), colony size uncertainty was absent from Seabird 

2000 Seabird Census, and although the error in UDs for colonies could be extracted, pseudoreplication 

was an issue within the Wakefield underlying approach preventing reliable use of those model errors.  

Thus, only ‘partial’ estimates of uncertainty are available for the MSS method due to the methodology, 

which is still an improvement on the SNH and BDMPS methods where uncertainty could not be 

represented.  

Data requirements and availability  

A full appraisal of the variables and their availability for further use of the ‘UCC’ variant of the MSS 

model are provided in WP2 of this project. However, the model requires tracking data and further 

information on foraging range of species that are further combined with covariates with the habitat 

modelling framework. As also noted above, the BNB variant of the model can include non-breeding 

individuals during the breeding season by sourcing data from at-sea survey data collection platforms 

such as boat or aerial surveys.  

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP2%20datasources.pdf
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Tracking data are now available for a variety of species of seabirds in the UK. However, related to the 

above uncertainty, a further concern with the MSS approach is that application of the method may be 

driven by the overall sample of empirical tracking data across colonies within the species’ range that 

may be available. Extrapolating predictions based on only a few sites may therefore be problematic. 

Related to this is the geographic distribution of colonies, which could be biased to a part of the species 

range – for example, groups of animals could behave differently or use different habitats, which is 

further linked to resource availability and could introduce model transfer errors. These are wider points 

therefore associated with appropriate coverage and characterisation of the species and capturing 

natural behavioural variation within the population. In the case of large gulls, such as lesser black-

backed gulls (Larus fuscus) for example, the behaviour and use of offshore areas may vary by different 

breeding ‘strata’, i.e. groups of breeding environments that vary by geography (i.e. urban, natural 

coastal, inland and island sites), which would therefore require consideration of sample size coverage 

of those environments.  

Time-distance function (Sage 2022) 

Background  

A further very recent method has been developed by Sage (2022). This approach is based on a time-

distance function (TDF) where the total time spent (t) within given distances for a colony is estimated 

as a proportion of the entire colony time budget across the season, over distance segments (r) up to 

the maximum foraging range radius (rmax) – see Equation 3 below; note also that the ti sum over all radii 

equates to the total seasonal colony time budget. The method has so far only been applied to lesser 

black-backed gulls. This method is also solely focused on tracking data and seeks to better quantify 

the decay in distance utilisation based on spatio-temporal units rather than pure spatially-static ones, 

as a realistic time-distance-decay function. The TDF then has merit in further application in applied 

scenarios for OWFs – see below. The TDF of each colony (TDFc) was first estimated by summing up 

all GPS time intervals of all individuals of a colony for incremental radial distances of 1 km from the 

colony centre, to calculate the proportion of time spent within each radial distance, 𝑃𝑟  

 

𝑃𝑟 =  ∑ 𝑡𝑖 ÷

𝑟

𝑖=0

∑ 𝑡𝑖

𝑟𝑚𝑎𝑥

𝑖=0

  [Eq. 3] 

 

[Equation 3] 

Colony-specific TFs were further combined as a species-wide TDF by normalisation (dividing each 

distance by the maximum distance of the colony) and taking a median proportion of time for each 

distance interval, in turn multiplied back by the normalised distance to rescale the TDF (Sage 2022). 

Non-linear models were then used to describe the shape of the TDF statistically.  

The TDF method can potentially be used for apportioning across multiple colonies. Using hypothetical 

scenarios Sage (2022) used the TDF to estimate the proportion of time spent (at distance) in the 

“Development Area” of hypothetical proposed OWFs. The first step in this process was to estimate the 

proportion of time in the Development Area PDc. for a given colony c. This is estimated by first 
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calculating the proportion of time birds spend at the required distance from the colony as estimated 

from the TDF using cumulative time proportion between two distance measurement increments. This 

temporal proportion is then divided by the area of the band (assuming a circular distribution) to give a 

relative density in the area. This value can then be multiplied by the area of the wind farm to give PDc. 

The estimates of PDc can be used to calculate colony site-specific weights in apportioning depending 

on the colony size, i.e. weight = PDc * colony size (Nc). Across multiple colonies, the site weights can 

then be further normalised to give proportional weights. This calculation can be made for land or sea 

masks of the distribution for relative available land or sea area. Explicit comparison is also made by 

Sage (2022) to the SNH apportioning methods (SNH 2018) over varying hypothetical OWF distances 

from colonies. The approach above could be used with a species-wide TDF as estimated across 

observed colonies that could be transferred potentially to where tracking data has not been collected. 

Note, however, these methods are not yet published and are a new approach that has not yet been 

widely tested. 

Strengths and weaknesses 

The method is empirically driven but can also be applied/transferred to colonies lacking data using the 

generalised species-wide TDF, which is a strength of the approach. Further, complexities can be 

investigated in movements over time, e.g. for seasonal effects moving beyond just the spatial 

component of prior methods. Additionally, the method explicitly deals with onshore and offshore 

components, which is important for species that may span both environments – this is achieved by 

considering parts of the time budget per colony spent in each environment. The Wakefield et al. (2017) 

MSS tool method only considered species using marine environments. This may be suitable for other 

species solely using marine environments but could require further model development to account for 

more generalist species that use a wider range of different environments. The TDF method is also 

simpler than that of Wakefield et al. (2017) and has less setup overheads and model runtime 

computational costs, and is further advanced than the SNH apportioning approach by using elements 

of time to estimate the TDF rather than an inverse distance weighted approach. That said, the method 

still makes assumptions that the species-wide TDF is appropriately characterised and biologically 

meaningful, dependent on the data feeding in (as noted above under the MSS approach).  

In terms of uncertainty, the TDF method also uses a best-fit non-linear regression line fitted to the TDF 

proportion of time~distance relationship to better draw out the trends, which will also carry a small 

amount of model error. Theoretically, the species-wide TDF across all colonies will also carry 

aggregation error, for example a median and upper and lower confidence limits of the TDF curve, which 

could then be propagated further for example if being applied more widely in apportioning, e.g. for 

colonies with no data. However, as noted elsewhere, the TDF method is in the early stages of potential 

application, and therefore if the method is refined, the limitations may change.    

However, the TDF does have similar disadvantages to previous SNH apportioning methods in that it 

assumes a radial approach for the time-distance function, thus assuming homogeneity in radial 

distributions, i.e. without further considering environmental covariate correlations with hotspots of use. 

The TDF approach can be applied where no tracking data exists, but the use of the upper radius would 

likely require use of species-level foraging ranges – this requires further testing and exploration. In 

addition, the method may lack realism, for instance by not accounting for conspecific sympatric and 

parapatric competition as in the MSS Wakefield method. The method thus needs observed tracking 

data to reliably parameterise the initial TDF for the species. As the TDF method is a new approach, the 
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processing and calculation time to reach eventual apportioning estimations is unknown at present. 

However, with a coded workflow, the process will be substantially less than the Wakefield MSS 

approach, being, for the most part, a data manipulation exercise (rather than statistical computation) 

with simple GIS tasks (i.e. offshore delineation), binning of data over distance and summed time 

calculations. With a sizeable tracking dataset, the TDF approach would need increasing data 

manipulation, but one that is not insurmountable.   

Data requirements and availability 

As above, the data required for this approach are tracking datasets to initially build the TDF but may 

require further information on species foraging ranges in estimation of a species-wide TDF. The method 

also requires information on population estimates of species for sites/colonies where apportioning is 

to be made; however, this is the case for all other methods reviewed here. The method also suffers the 

same constraints as the Wakefield method in characterising the species and sample size of number of 

colonies with tracking data at the outset.  However, the method otherwise has minimal overall 

complexity.  

Biologically Defined Meaningful Population Scales (Furness 2015) 

Background 

Currently, the BDMPS methodology (Furness 2015) is the default method for apportioning numbers of 

seabird species to colonies in the non-breeding season. This approach arose from work within the UK 

renewable energy industry and identified a need to understand and define non-breeding season 

seabird populations for apportioning work. Areas within the biogeographic range in UK territorial 

waters are unlikely to be homogenous in spatial distribution and so may contain quite different 

numbers of birds whose provenance may differ. This was the main motivation behind the 

development of the BDMPS method, and facilitated the definition of geographic scope of these 

populations for different species, for more meaningful use in apportioning of birds within the Special 

Protection Area (SPA) network. This work, therefore, informed the Habitats Regulations Assessment 

(HRA) process within Environmental Impact Assessments. Such BDMPS areas may be anywhere from 

the biogeographic range of a species downward (Furness 2015) and at lower scales relates to the 

biogeographic population with connectivity to UK waters, i.e. UK breeding individuals plus overseas 

immigration/emigration during the non-breeding season. The report by Furness (2015) defined three 

main aspects for further use in EIAs for several UK seabird species: (a) the biogeographic population 

with connectivity to UK waters, (b) numbers of birds (adults and immatures) within seasonal periods, 

and (c) the numbers of birds per season in BDMPS for each species, with contribution from UK and 

overseas further defined.  

Seabirds may experience four main effects from offshore wind farms: collision, displacement, barrier 

effects and indirect effects on prey, and the BDMPS method has been used for apportioning within 

EIAs, particularly for collision and displacement effects. Here, density is first estimated within wind 

farm footprints from at-sea survey data. For displacement, simple matrices of displacement rate and 

mortality rate per species have typically been used to highlight likely rates (i.e. based on expert 

judgement) to inform the numbers of birds impacted. These values can then be used in conjunction 

with the BDMPS for that species and seasonal definitions, summing winter and summer components, 
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to apportion those impacts within the SPA network. For the effect of collision, a collision risk model 

(CRM), such as the Band (2012) model and subsequent versions and extensions (Masden & Cook 

2016) is initially used for estimating potential numbers impacted by the development; this stage also 

requires various data inputs that are beyond the scope here but see Masden & Cook (2016); thereafter 

apportioning follows a similar workflow as above, to apportion to SPAs. This is achieved by dividing 

the SPA population by the relevant seasonal BDMPS per species, to obtain the proportion of the 

BDMPS population expected to originate from the SPA. 

Strengths and weaknesses 

The BDMPS method is simple and relatively straightforward to apply, using a spreadsheet to transfer 

pieces of information within a stage-wise approach. The method brings together existing information 

and knowledge to make better-informed judgements, and was an important step forward in being able 

to attempt apportioning for the non-breeding period. However, the method naturally carries several 

limitations, with decisions often based on limited data with some further strong biological 

assumptions made. 

Expert judgement is used within the BDMPS initial estimations, from the initial regions used to 

originally estimate the BDMPS in Furness (2015), through to the assumptions made with respect to 

specific effects as part of EIA. For the BDMPS regions, the numbers of birds in different areas are not 

well known, and the movement patterns of immatures are highly uncertain, which is a constraint on 

estimating proportions of UK birds from overseas, requiring assumptions based on best available 

data (Furness 2015). Expert biological judgement is therefore made when initially identifying the 

species-specific BDMPS, which further, may also not remain static over time. The BDMPS areas can 

be very large in size, and there is an implicit assumption, that each not only has a constant population 

per species but that the areas of sea within each BDMPS have the same apportioning proportions.  

For assessment of effects and eventual apportioning, decisions are made for mortality rates for 

displacement and avoidance rates for collision risk, often taken as a single species value for 

components of populations that could have much greater complexity temporally or spatially for a 

given species. Further assumptions for specific effects in relation to offshore wind farms are also 

made for example in collision risk assessment assuming spatial homogeneity in collision risk, for 

example for passage movements.  For displacement, the approach makes simplistic assumptions of 

population demography. Summer and winter seasonal components (for adults and immatures) are 

assumed separate and are considered additively in the final estimations of numbers; this calculation 

could double count mortality given that in summer changes in body mass are not independent of 

winter mortality. Effects on productivity are ignored, i.e. the loss of animals estimated for each 

population is a single static estimate without further consideration of effects on reproductive output. 

Within each of these steps there is no quantification of uncertainty. 

Data requirements and availability 

In the initial identification of BDMPS, the flux movements of birds from the UK to and from overseas 

involve consideration of a range of data types, such as seawatching data, ringing data, geolocation 

information (where available), and other markers of origin such as biometric variation, genetic 

phenotypic variation, stable isotopes and pollutants (Furness 2015). These data are broadly available 

across most species; however, as noted above, these data carry approximation and generalisation 
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meaning the initial BDMPS characterisation has numerous assumptions and unquantified levels of 

error. Numbers of birds in UK waters come from at-sea survey information such as ESAS, 

biogeographic estimates from Stroud et al. (2001), and more recent updated values. Similarly, the 

data for estimating density comes from at-sea surveys such as aerial and boat-based platforms 

carried out within the wind farm footprint. 

Demography data (survival rate, age of first breeding, productivity) can be included within this method 

for the species assessed, for example, to assess apportioning through to different demographic 

components of the population, i.e. to ascertain numbers of immature birds per breeding population.  

As noted above, the timing of breeding and migration are also required for seasonal delineations per 

species, also sourced through a review of the literature (Furness 2015).  

Future work could include updating the population sizes used, most logically to be undertaken on 

completion of the new Seabirds Count full UK census. Priority for future work would also include 

updating with the latest information on demographic rates (survival rates, age of first breeding, 

productivity), in order to most accurately assess the numbers of immature birds. Adjustment is also 

made for seasonal phases that may differ from the original recommendation (Furness 2015). Hence 

future work could incorporate the latest data and insights into timing of breeding and migration from 

populations breeding inside and outside the UK to inform those periods.  

New tools for the non-breeding season based on GLS data 

Background  

Geolocation-immersion (GLS) tags are now widely deployed across several UK seabird species (e.g. 

Linnebjerg et al. 2013, Harris et al. 2015). These devices are light-level data loggers and are lightweight 

and long-lasting. Since position is estimated using ambient light intensities, elapsed time, and saltwater 

immersion, GLS locations have relatively large uncertainties of 100-200 km (Merkel et al. 2016). 

However, they offer important insights into the movement and distribution of seabirds during the non-

breeding season that cannot be obtained using any other method (e.g. year-round deployments of GPS 

loggers is not currently an option for many seabirds). These data offer the opportunity to develop a 

data-driven approach for apportioning in the non-breeding season. However, there are currently no 

examples where such an approach has been carried out. Consequently, the following appraisal of this 

method is based on any further anticipated data manipulation and potential strengths and weaknesses. 

If colony-specific utilisation distributions (UDs) can be estimated from GLS data then, as with GPS data 

in the breeding season, these colony-specific UDs can, together with counts of colony size, be used to 

apportion birds to colonies within the non-breeding season. Modelling of spatial distributions from GLS 

data has similarities with the modelling of GPS data, but there are some important differences in the 

data collected: 

• GLS data are much lower frequency than GPS data – typically 1-2 records per day, which means 

detailed modelling of spatial movement is not possible. 

• Levels of observation error in GLS data are much higher than for GPS data, and are sufficiently 

large that models which ignore observation error are unlikely to be defensible. 

• The levels of observation error in GLS data are likely to be heterogeneous, and it seems that as 

they vary according to known factors (e.g. time of year) this variability can be modelled. 
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These differences mean that the methods used to build models to apportion in the non-breeding season 

will likely differ from those used in the breeding season. However, using advanced kernel-density 

estimation methods, the above data issues could be accounted for and thus produce utilisation 

distributions in a similar way as used for the breeding season. The GLS tracks could be split into 

different phases such as moulting and wintering seasons and utilisation distributions obtained. Several 

steps, however, may be required, for example, initial data visualisation, the aforementioned kernel 

density estimation, and further overlap assessment and novel apportioning using predicted shared 

space estimated among populations. 

Data visualisation in space and time can allow the tracks from colonies to be mapped and uncertainty 

to be explored. A valuable approach could be the use of space-time cubes (Demšar et al. 2015), which 

visualise spatio-temporal data. This approach can gain insights into pathways to their non-breeding 

sites including whether all birds from a colony use the same transition corridors or whether their tracks 

vary markedly by individual. 

Utilisation kernels are a broad church of methods that range in complexity from time-static approaches, 

through to more complex distribution models. For satellite-based data, advancements have been to 

characterise location uncertainty into ecological process models such as resource selection functions 

(e.g. Thurfjell et al. 2014) and movement approaches (e.g. McLintock & Michelot 2018). Recently, for 

GLS data, azimuthal telemetry models (ATM) have been proposed that include location uncertainty 

(Gerbel et al. 2018) and could be used to produce a set of utilisation distributions as part of the 

apportioning workflow. 

Area overlap metrics, such as Bhattacharyya’s affinity, between sets of distributions could then be 

generated i.e. among colonies, species, and per year (if such data allow). Estimation of potential 

population usage could then be generated in a similar way to breeding season data. These overlaps 

could then allow apportioning to be made (scaled up to population size using colony counts) by looking 

at the shared space use of a combined set of colonies, with a measure of uncertainty. New regions to 

aggregate colonies could further be defined for colonies of a given species without tagging data, and 

apportioning carried out according to the region they are placed in.  

As a final step in this potential workflow, species will vary with how consistent their distribution is by 

colony and over time. A qualitative Red-Amber-Green visual system could therefore be useful to label 

how confident apportioning metrics are for each species/area. 

Strengths and weaknesses 

This approach has not been used and so cannot be fully scrutinised. The steps involved do require a 

degree of modelling and computational overheads, thus being more complex than for example a simple 

spreadsheet-based approach of the BDMPS. However, the use of empirical information to define non-

breeding home ranges would be a significant advancement over the expert-judgement approach used 

within the BDMPs (see section 2.4 above). Further, the incorporation of error, if feasible within the 

modelling workflow, would make this method one of the few to explicitly deal with uncertainty.  

Although new regions could be defined for colonies without tracking data, it is perhaps less clear how 

well this will work in practice, i.e. in a more predictive sense without further habitat association 

modelling. The GLS approach as with all methods directly using tracking data, assumes the data 

collected adequately characterise the species non-breeding distributions, which may carry significant 

error if colonies around the UK are not widely represented. Further issues of annual and within-seasonal 



 

16 
 

variation complexity may also become apparent, and the use of utilisation distributions directly 

incorporating error is perhaps more in its infancy for azimuthal location data, although advancements 

have been made recently. Overall, this method would be worth exploring for further datasets if they 

become available over a suitable number of colonies for a given species. 

Data requirements and availability 

As above the GLS data are the main input into this approach, and SPA population size information is to 

be used within the apportioning. This makes the approach attractive in relying less on further data that 

carry extra assumptions. 
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3. Discussion 

This review builds on previous assessments and comparisons of methods such as Butler et al. (2020). 

Here we consider six main methods for apportioning impacts of renewables back to breeding 

populations. These include a very recent method of Sage (2022) but that at the time of writing has not 

yet been published, and potential further use of GLS data for non-breeding season data. The various 

advantages and disadvantages of the approaches are summarised in Table 2 below. 

All methods reviewed here ingest population estimate data. Population size and proximity to 

conspecifics were among the most important predictors found by Wakefield et al. (2017), making it 

important to source reliable estimates of population size, and handle these data appropriately. 

Population data will be particularly important for some species where survey coverage may vary 

depending on the breeding habitat, for species such as large gulls for example where characterisation 

of urban habitats is of potential concern and has been subject to recent further estimation since the 

last seabird census (Burnell et al. 2020a, b). Interpolation methods of Butler et al. (2020) can be used, 

i.e. the UCC variant of the model, should more recent estimates be unavailable from some sites beyond 

the Seabird 2000 survey.  

Breeding season 

All methods focused on the breeding season further require an estimation of foraging range, including 

both the MSS tool of Butler et al. (2020) and the TDF method of Sage (2022). The breeding season 

methods have some further general commonality in assuming an area- or distance-time approach for 

quantifying a number of animals that may utilise a given space that can then be shared among colonies 

believed to be in the vicinity of likely provenance. These are matters of establishing likely ‘connectivity’ 

between potential development areas and populations, such as SPAs. This is a straightforward task 

where tracking data exist. This still means, however, that when making predictions, all methods assume 

certain connectivity to other sites or colonies within the foraging range, or for the MSS tool, within the 

range identified in predictive modelled surfaces. Verification of connectivity from further direct tracking 

data for specific sites is always a useful endeavour and could be used to further validate the underlying 

model assumptions, enabling greater certainty that apportioning methods have been assigned sensibly.  

Among other shared aspects, the methods have a common disadvantage in being unable to fully 

account for uncertainty in final propagated apportioning. The MSS tool goes part way to addressing 

this by including consideration of varying sample size and how that affects uncertainty in the 

percentage apportioning values but as stated by Butler et al. (2020), colony size uncertainty and the 

error in the UDs from the Wakefield method could not be accounted for (see section 2.2.2). Potentially 

the Sage (2022) method may be able to incorporate uncertainty in the TDF based on the species-level 

modelled curves more explicitly. However, this method is at the stage of demonstration only having not 

been directly applied.  

However, the methods have a number of differences and particular key advantages and disadvantages. 

The original SNH methods are among the most simplistic to apply during the breeding season and 

would be useful in any apportioning study to trial alongside more advanced methods, to test and 

understand the underlying distance-based decay assumptions involved. The SNH methods, however, 

suffer a lack of biological realism and unquantified uncertainty, sacrificed in favour of simplicity. Indeed 

more advanced methods could potentially feed those relationships back into the SNH tools.  
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The MSS apportioning tool of Butler et al. (2020) is by far the most advanced of all the methods, 

encompassing biological realism, and is based on the original Wakefield statistical framework, with 

further extension through R scripts to apportioning; extensions of the tool are provided using more 

recent population data, and further still inclusion of non-breeding space use from at-sea datasets 

alongside breeding-season tracking datasets that give high value, widening flexibility in scope. 

However, these advantages come at a price. The MSS tool has high computational overheads and 

potential complexity when applied to new species that could also need alteration to the underlying 

model and sourcing of new covariate information. Nonetheless, the value of this approach is worthwhile 

applying across other species. 

Non-breeding season 

For the non-breeding season, the BDMPS method is at present the most widely used tool for the non-

breeding season. This method is straightforward – arguably more simple than the SNH apportioning 

tools – and, should the existing BDMPS regions and seasonal definitions be used as in Furness (2015), 

only needs population data, as well as the metric to be apportioned. Further complexity is introduced in 

the EIA process for the specific effects being apportioned, such as displacement and collision risk that 

carry further assumption and data requirements. The BDMPS, however, is highly prone to many 

assumptions that are also acknowledged in Furness (2015), including the data feeding into initial 

constructs of the BDMPS, but further, the areas themselves still represent homogenous units, that may 

still be biologically unrealistic.  

Further new methods may be possible using GLS data to better characterise area use of species during 

the non-breeding period, which would bypass the use of BDMPS. The potential of these are explored 

here but they are as yet untested and limited to where feasible for certain populations where such data 

exist. Potentially the MSS tool variant BNB of the model could be useful alongside BDMPS in future 

studies for the breeding season, i.e. for examining population components including breeders and non-

breeders as a potential comparison.  
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4. Final conclusions and recommendations 

This review has highlighted the strengths and weaknesses of the methods reviewed. The methods all 

have merit and it was not possible to recommend one single way of carrying out apportioning, as much 

will depend on the nature of the species and data available. The MSS tool, however, emerged as one 

such method worthy of wider investigation, being based on the most biological realism of all methods. 

At the time of writing no new species or time periods have been modelled following on from the 

Wakefield method, but potentially more species could be investigated that have data available to fit the 

MSS tool framework, such as northern gannet Morus bassanus, Manx shearwater Puffinus puffinus, and 

species of gull, such as lesser black-backed gull. Combined with the UCC method of Butler et al. (2020) 

for newer population data, and potentially new covariates, the use of the MSS tool would be valuable. 

Using GLS data, such as those available for guillemot and razorbill, should be considered for 

apportioning in the non-breeding season, in order to move away from some of the key assumptions 

regarding colony provenance that are made in BDMPS.  
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Table 2. Summary of the main data requirements, and strengths and weaknesses of each approach. 

Method Season Data inputs 
Data 
availability 

Analytical 
Complexity 

Biological 
realism 

Advantages Disadvantages References 

SNH 
Tool   

Breeding 

Foraging range 

(e.g. from 

tracking data) 

High Low Low 

Very simple to 

understand, quick to 

apply and produce 

results 

Linear distance is not 

realistic for species that 

cannot cross land; decay 

occurs homogenously in 

radii, species foraging 

ranges may become 

outdated, or be less reliable 

given lack of data; does not 

account for uncertainty 

SNH (2014) 

SNH 
Tool 
‘plus’ 

Breeding 

Foraging range 

(e.g. from 

tracking data) 

High Low 

Low, but 

better than 

previous 

Advantage over 

previous tool in not 

assuming linear 

distance, but distance 

by sea 

As with previous tool i.e. 

radii; species foraging range 

criticisms; lack of 

uncertainty  

SNH (2018) 

MSS Tool  Breeding  

Tracking data, 

population size, 

covariates 

 

Non-breeding 

BNB model 

Medium, if 

starting from 

scratch  

 

Very high, if 

running 

models from 

scratch 

  

High 

Good inclusion of  

biological realism, 

capturing 

environmental 

association and 

population competition 

effects; R code 

Existing species maps 

become outdated, new 

populations may be tracked 

over new time periods, or 

new species may be studied 

requiring re-running of 

models; relies on covariate 

Butler et al. 

(2020) 
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Method Season Data inputs 
Data 
availability 

Analytical 
Complexity 

Biological 
realism 

Advantages Disadvantages References 

includes at-sea 

aerial/boat data 

for distributions 

High, if using 

existing data 

Medium, if 

using existing 

models, but 

still with 

computational 

cost 

available to implement 

the method; can 

include non-breeding 

birds; explicitly includes 

partial uncertainty 

assessment; flexible 

for three different 

‘versions’ of the tool 

data availability; imputation 

of colony counts carries 

uncertainty in UCC variant; 

assumptions made on 

covariate drivers and ratio of 

breeding/non-breeding birds 

in BNB method variant; 

currently uses all behaviours 

not just foraging; does not 

account for uncertainty in 

colony size or foraging 

distribution 

TDF Breeding 
Tracking data; 

foraging range 

Medium, 

requires initial 

tracking data if 

parameterising 

 

High, if using 

existing TDF for 

a given species 

Medium, if 

running from 

scratch 

 

 

Low, if using 

existing 

species’ TDF 

Medium 

Simple, likely rapid on 

the whole, and brings in 

temporal component 

for greater realism 

beyond just distance 

metrics 

Largely untested. Processing 

of large amounts of tracking 

data but likely still at 

relatively low computational 

costs; simple method to 

understand; still based on  

foraging ranges if applied to 

unobserved colonies; 

assumes TDF is 

generalizable 

Sage (2022) 

BDMPS  
Non- 
breeding 

Population 

sizes; for 

Medium, may be 

many sources 

Low Low Currently the ‘main’ 

approach for non-

BDMPS for each species, is 

large, homogenous and 

Furness 

(2015) 
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Method Season Data inputs 
Data 
availability 

Analytical 
Complexity 

Biological 
realism 

Advantages Disadvantages References 

BDMPS various 

data used for 

defining, e.g. 

ringing, tracking; 

EIA, further data 

for specific 

effects, such as 

likely mortality 

data, CRM data 

but data quality 

and amounts 

vary by species 

and source 

breeding data, simple 

to use and based on a 

comprehensible 

spreadsheet 

within each contains the 

same apportioning 

proportions; expert 

judgement made in defining 

areas; time static; 

assumption of temporal 

breeding phases; decisions 

taken on further effects from 

wind farms in EIAs, such as 

mortality rates, and further 

lacks integration of 

demographic realism; does 

not account for uncertainty.  

GLS 
methods 
 

Non- 
breeding  

GLS data, 

population size 

Low to medium, 

dependent on 

species’ having 

available data 

Likely medium 

Medium, not 

directly 

linked to 

covariates, 

but improves 

on BDMPS 

Potential use of actual 

data on non-breeding 

distribution rather than 

estimated spatial units 

as in BDMPS; potential 

to include uncertainty 

within the modelling 

workflow 

Untested; limited by GLS 

data available for species, 

that may also be limited to 

certain colonies constituting 

potential 

sampling/geographical bias; 

requires further definition of 

the precise analytical tools 

to be used.   

- 
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