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ORJIP Offshore Wind 

The Offshore Renewables Joint Industry Programme (ORJIP) for Offshore Wind is a collaborative initiative 

that aims to: 

• Fund research to improve our understanding of the effects of offshore wind on the marine 

environment 

• Reduce the risk of not getting, or delaying consent for, offshore wind developments 

• Reduce the risk of getting consent with conditions that reduce viability of the project. 

The programme pools resources from the private sector and public sector bodies to fund projects that 

provide empirical data to support consenting authorities in evaluating the environmental risk of offshore 

wind. Projects are prioritised and informed by the ORJIP Advisory Network which includes key 

stakeholders, including statutory nature conservation bodies, academics, non-governmental 

organisations and others. 

The current stage is a collaboration between The Carbon Trust, EDF Energy Renewables Limited, Ocean 

Winds UK Limited, Equinor ASA, Ørsted Power (UK) Limited, RWE Offshore Wind GmbH, Shell Global 

Solutions International B.V., SSE Renewables Services (UK) Limited, TotalEnergies OneTech, Crown Estate 

Scotland, Scottish Government (acting through the Offshore Wind Directorate and the Marine Directorate), 

and The Crown Estate Commissioners. 

For further information regarding the ORJIP Offshore Wind programme, please refer to the Carbon Trust 

website, or contact Ivan Savitsky (ivan.savitsky@carbontrust.com) and Žilvinas Valantiejus 

(zilvinas.valantiejus@carbontrust.com). 
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Who we are 

Our mission is to accelerate the move to a decarbonised future.  
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We have been climate pioneers for more than 20 years, partnering with leading businesses, governments 

and financial institutions globally. From strategic planning and target setting to activation and 

communication - we are your expert guide to turn your climate ambition into impact.  

We are one global network of 400 experts with offices in the UK, the Netherlands, South Africa, China, 

Singapore and Mexico. To date, we have helped set 200+ science-based targets and guided 3,000+ 

organisations in 70 countries on their route to Net Zero. 
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1. Introduction 

The aim of this workpackage is to evaluate apportioning methods identified during WP1 by utilising the 

datasets with the most potential from WP2 to determine their consistency and assess their 

strengths/weaknesses. WP1 and WP2 demonstrated, however, that the set of methods that have 

already been used for apportioning in a UK context is very limited, whilst identifying situations in which 

the data are available to extend these methods or develop new methods. In consultation with the 

Project Steering Group, WP3 therefore focussed on developing or extending more advanced methods 

for apportioning in two key situations in which this was identified, based on WP1 and WP2, to be both 

feasible and a high priority, and then on evaluating these new or extended methods against existing 

methods. 

In the context of breeding season apportioning, the SNH/NatureScot Apportioning Tool is the only 

apportioning tool that is currently in use for most species – it is a simple method that is easily 

implemented but makes strong assumptions and does not utilize all of the available data. GPS summer 

tracking data were previously used to develop spatial distribution maps (Wakefield et al., 2017) and 

thereby apportioning estimates (Butler et al., 2020) for four species, providing an alternative to the 

SNH/NatureScot Tool. Extensive GPS tracking data, although not available for all species, are available 

for species beyond those considered previously (WP2). Accordingly, we here extend the spatial 

distribution mapping approach of Wakefield et al. (2017) to include a new species, lesser black-backed 

gull, in order for these maps to provide an alternative apportioning method to the SNH/NatureScot Tool 

for this species. 

Breeding season apportioning is aided by the strong central place foraging constraint, which 

necessitates a strong relationship between the spatial distribution of birds and the distance from the 

colony. Non-breeding season apportioning is more challenging, and the only approach that is currently 

used in practice for this in the UK is BDMPS, an approach that considers broad spatial regions. We 

develop an alternative approach, using GLS winter tracking data of guillemot and razorbill (Buckingham 

et al., 2022) to develop maps that can be used for apportioning. Unlike previous apportioning methods, 

this approach also provides a quantification of uncertainty – the locational uncertainty in GLS data is 

potentially large, and we account for this uncertainty explicitly.  

We evaluate the new summer GPS-based lesser black-backed gull maps against the NatureScot tool, 

and the new winter GLS-based maps for guillemot and razorbill against BDMPS. In both cases, the 

comparison is against the spatial distribution that underpins the methods, not the apportioning 

percentages i.e., it is an evaluation of the underlying assumptions of the methods rather than a 

comparison of the actual apportioning results. This is the fundamental analytical progress that is 

required in order to develop new apportioning estimates, and the most useful, and easily interpretable, 

way to compare the key differences between the two approaches. As such, we were able to fulfil two 

main objectives: to broaden estimation of underpinning distributions used in apportioning calculations 

to new species and seasons, and to compare methods of generating colony-specific distributions 

underpinning apportioning calculations. 

The next workpackage (WP4) is tasked with developing a tool to calculate apportioning percentages in 

a suitable format, and will involve developing the code for the apportioning tool based on the methods 

presented here, including the development of a user interface. As well as the existing methods 

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP1%20review.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP2%20datasources.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP1%20review.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP2%20datasources.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP1%20review.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP2%20datasources.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP2%20datasources.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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(SNH/NatureScot and BDMPS), and the two new methods described here, it will also include a simple 

extension of the NatureScot method, in which the rate of decay with distance is estimated from 

published foraging ranges rather than being fixed to be equal to minus two. WP4 will also include a 

comparison of the apportioning values obtained using different methods, including comparisons of 

methods for all species for which at least two methods are now available – in contrast, the evaluations 

here are comparing the colony-specific spatial distribution maps underpinning the methods, and have 

focused specifically on the two situations in which new or extended methods have been developed.  

The reason the apportioning calculations are undertaken in WP4, and not in this report, is because it 

has emerged that for each of the two new/extended methods there is an extra, non-modelling, step 

required in order to carry the modelling through to apportioning, and it has also become clear that a 

comparison of the final apportioning results can most usefully and defensibly be undertaken once the 

methods have been implemented within the tool. For the lesser black-backed gull analysis the 

additional, non-modelling, step that will be required in order to translate the spatial distribution maps 

described here into apportioning estimates will be  an  adjustment for proportion of time spent foraging 

on land: this was not required for the four species considered in Butler et al. (2020), but is required here 

because of the substantial proportion of time that lesser black-backed gulls can spend foraging on 

land, and because this proportion can vary substantially between colonies.  For the auk GLS analysis, 

there are areas of the UK coast that do not lie close to any of the tracked colonies used in creating the 

GLS maps, and in these situations, we propose that the apportioning method will default to using 

BDMPS, so that the new apportioning method will use a hybrid of GLS-based maps (where feasible and 

defensible) and BDMPS (in other situations).  

The two main sections of this report focussed on the methods and results associated with developing 

the two main new analyses outlined above – an analysis of summer distributions of lesser black-backed 

gulls (Section 2) and an analysis of winter distributions of guillemot and razorbill (Section 3) – and on 

evaluating these against existing approaches (SNH/NatureScot apportioning and BDMPS, 

respectively). Within each section a more detailed description of how the results of these analyses will 

be used in apportioning within WP4 is provided. 

2. Extending summer apportioning to lesser 
black-backed gull 

Introduction 

Lesser black-backed gulls are an important species in the context of offshore renewables as they use 

areas identified for offshore wind farms extensively throughout the breeding season both pre- and post-

wind farm construction (Thaxter et al. 2015, 2018), and regularly fly at heights where they are at risk of 

collision with turbine blades. Furthermore, in response to widespread declines at breeding colonies, they 

have been placed on the Amber List of UK Birds of Conservation Concern (Eaton et al. 2015). 

Consequently, lesser black-backed gulls have been identified as being potentially vulnerable to 

collisions with offshore wind turbines (Garthe & Huppop 2002; Furness et al. 2013), and studies have 

suggested that the cumulative impact of collision has the potential for a significant negative population 

level impact within the wider North Sea Region (Brabant et al. 2015). 

 

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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The only breeding season apportioning tool available prior to this project for lesser black-backed gulls 

was the NatureScot (formerly SNH) Apportioning Tool. This tool makes strong and biologically 

unrealistic assumptions and fails to quantify uncertainty, so there is a clear need to develop alternative 

apportioning approaches for this species. The MSS Apportioning Tool (Searle et al., 2020) is based on 

habitat use models derived from tracking data (Wakefield et al. 2017) for four species of seabird 

(European shag, black-legged kittiwake, common guillemot, razorbill). A key advantage of this approach 

is that habitat use is species and colony specific, informed by the environmental availability of each 

colony, and that these relationships are estimated using empirical data. High-resolution GPS tracking 

data are available for lesser-black backed gulls across multiple years and colonies, so we have used a 

similar approach to that in Wakefield et al. (2017) to develop a new apportioning method for lesser black-

backed gulls.  

The apportioning approach taken for lesser black-backed gulls is similar to that in Wakefield et al. 

(2017) and Searle et al. (2020): it uses statistical models to link relative abundance, derived from GPS 

tracking data, to a range of explanatory variables that relate to accessibility, competition and 

environmental conditions, as in Wakefield et al. (2017), and then converts these into apportioning 

percentages as in Searle et al. (2020). In particular, we consider the same potential explanatory 

variables as in Wakefield et al. (2017), although we use updated data sources, for a more recent time 

period, for these where possible. The statistical modelling and model selection approach is also as in 

Wakefield et al. (2017). However, during explanatory data analysis it became clear that some 

differences from the Wakefield et al. (2017) approach were needed, because lesser black-backed gulls, 

unlike the species considered by Wakefield et al. (2017), can spend a substantial proportion of time 

foraging on land. We therefore account for this, by adopting a two-stage apportioning approach: spatial 

distributions at sea are modelled as in Wakefield et al. (2017), and then a post-hoc adjustment is applied 

to the outputs of these models to account for the proportion of time spent foraging on land. The 

adjustment is necessary because the usage of land for foraging varies substantially between different 

types of colonies. We use a simple post-hoc adjustment, rather than modelling locations on land as 

well as sea, because of the challenges in constructing a habitat model that would provide a realistic 

characterisation of habitat use both of land and at sea, and because apportioning only needs to be 

carried out for locations at sea. We calculate the probability of apportioning to a particular colony, for 

a particular grid cell or area of sea, to be proportional to: 

 

Colony 

size 
* 

Proportion of 

foraging time birds 

from this colony 

spend at sea 

* 

Estimated probability from the model of at 

sea spatial distributions of being in this 

grid cell (or area) 

 

For each grid cell or area of sea (e.g. footprint), these quantities will be calculated for every colony, and 

then rescaled to sum to one. Although we explicitly account for time spent we foraging on land, we 

follow the approach of Butler et al. (2020) in not explicitly account for time spent at the colony – this is 

equivalent to an assumption that the proportion of time spent at the colony is approximately the same 

for all colonies. Future work could involve attempting to relax this assumption by estimating variations 
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between populations in the proportion of time spent at the colony, but a key challenge would be to do 

this in a way that would allow the results to be applied to untracked as well as tracked colonies. 

Here, we focus upon presenting the data, methods and results of the new statistical modelling of spatial 

distributions at sea for this species using GPS tracking data. We also compare these estimated spatial 

distributions against the distribution implied by an inverse distance squared rule, since that is the key 

assumption that underpins the NatureScot apportioning tool, the existing breeding season apportioning 

tool for this species.  

Methods 

Data collection  

Tracking data 

Tracking data were collected for Lesser Black-backed Gulls (hereafter LBBGU) between 2010 and 2020 

for nine sites (hereafter referred to also as ‘colonies’; Table 1; Fig. 1(b)). For some sites, LBBGU was 

listed as a qualifying breeding feature of SPAs (Table 1), including: the Alde-Ore Estuary SPA (Orford 

Ness), Morecambe Bay and Duddon Estuary SPA (Walney), Skomer, Skokholm and the Seas off 

Pembrokeshire SPA, Ribble and Alt Estuaries SPA, Bowland Fells SPA, and the Forth Islands SPA (Isle 

of May, Fidra and Craigleith). Given the need to understand the movements of urban gull populations 

in the UK (Ross-Smith et al. 2014), urban sites were also studied at Barrow-in-Furness (LBBGU) and 

Belfast (Table 1). Further information on the colonies tracked and methods used to gather data are 

available from the following studies: Orford Ness: Thaxter et al. (2014, 2015), Walney: Thaxter et al. 

(2018), Johnston et al. (2022); Skokholm: Thaxter et al. (2019), Ribble: Langley et al. (2021); Isle of May, 

Fidra and Craigleith Clewley et al. (2020), Barrow-in Furness: Langley et al. (2022); Belfast (Booth-Jones 

et al. 2021). Additional tracking data at Bowland Fells were also available from the wider research 

programme of large gull tracking; however, this colony was not included as the habitat used by the 

tracked individuals was exclusively inland. 
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Table 1.  Numbers of tags providing initial GPS data in each year for Lesser Black-backed gulls 

studied between 2010 and 2020. Individuals often contributed data across multiple years; the 

total number providing data across years for each colony is also shown, further broken down 

by the tag type used. Tag types are given as: MT= Movetech, UvA =University of Amsterdam. 

Also shown are the corresponding number of apparently occupied nests (AON) for each site 

from the Seabird 2000 census, and colony type. 

 Individual GPS tracking data by year 

Colony AON 

C
o

lo
n

y 
ty

p
e

 

2
0

1
0

 

2
0

1
1

 

2
0

1
2

 

2
0

1
3

 

2
0

1
4

 

2
0

1
5

 

2
0

1
6

 

2
0

1
7

 

2
0

1
8

 

2
0

1
9

 

2
0

2
0

 

T
o

ta
l 

N
 

Tag type 

M
T

 

U
v

A
 

Walney 19,487 Coastal 0 0 0 0 24 16 38 24 14 7 0 49 5 44 

Skokholm 2,419 Island 0 0 0 0 25 20 14 3 0 0 0 25 0 25 

Orford Ness 5,500 Coastal 11 19 15 11 4 2 0 0 0 0 0 24 0 24 

Isle of May 1,203 Island 0 0 0 0 0 0 0 0 0 28 20 28 3 25 

Craigleith 391 Island 0 0 0 0 0 0 0 0 0 3 1 3 3 0 

Fidra 599 Island 0 0 0 0 0 0 0 0 0 5 1 5 5 0 

Barrow 85 Urban 0 0 0 0 0 0 9 19 13 6 0 31 31 0 

Belfast 63 Urban 0 0 0 0 0 0 0 0 4 5 1 6 6 0 

Ribble 4,150 Coastal 0 0 0 0 0 0 9 17 16 18 6 38 30 8 

 TOTAL 11 19 15 11 53 44 91 79 56 76 29 238 112 126 

 

Previous work at Orford Ness (Thaxter et al., 2017) showed the relationship between area use and the 

number of birds tracked, and concluded that likely enough birds had been tracked to estimate area 

usage for that colony. Sample sizes for other colonies aimed to be at least as high as this, although for 

logistical reasons this was not always feasible (for example, at Belfast). 

Two different types of GPS tag were used to collect telemetry data on the movements of LBBGU in this 

study: (1) The University of Amsterdam Bird-tracking System (UvA-BiTS), and (2) Movetech Telemetry 

(a consortium of scientific partners, BTO, the University of Lisbon and the University of East Anglia and 

development partners Fleetronic). Both tags are long-life solar-powered storage devices that record 

information on GPS locations, timestamps, and other parameters including speed, altitude and further 

instantaneous measurements on fix quality and acceleration. The two types of tags relayed information 

back to the user remotely; however, their means of doing so differed. The UvA-BiTS system used a base 

station and a network of relays that transmitted the data back via a VHF transceiver to a field-based 

laptop and uploaded data to a cloud-based database. The Movetech system uses GPS-GSM tags that 

relay to the user via the mobile phone network. For more information on the systems used see Bouten 

et al. (2013), Thaxter et al. (2019), and Langley et al. (2021, 2022). The use of Movetech devices was 

often prioritised for sites where use of a base station was prohibited or difficult to implement, including 
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remote sites and urban locations. Thus, the distribution of tag types differed for the colonies studied 

(see Table 1). 

The two tag types above also varied in their ability to collect data at different sampling rates. The UvA-

BiTS system collected data at finer resolutions, primarily using a base rate of five minutes but also 

including bursts of faster sampling up to 3 seconds. The UvA-BiTS base rate was also lowered at the 

colony while birds were at the nest or territory, and increased in some areas away from the colony, such 

as areas of offshore wind farms, both attained through use of ‘geofences’ implemented through the 

software, which helped either preserve battery (e.g. at the colony) or direct sampling protocols for 

research purposes (e.g. at wind farms). Movetech tags were able to collect data up to 5–15 minutes 

but more typically were 30–60 mins during the daytime; duty cycling was also used for Movetech tags 

to collect less frequent data, one fix every three hours, during times with lower light levels (ca. 2100-

0600), to preserve battery. The UvA-BiTS tags were also programmed to record GPS data at lower 

sampling frequency during the non-breeding period of the annual cycle, whereas in Movetech tags this 

was typically unchanged throughout the year. Therefore, at the tail ends of the period of time when 

birds were ‘associated with the colony’ (i.e. including pre-breeding and post-breeding movements), UvA-

BiTS tags were often still recording information at lower rates (typically ~30–60 minutes) either ahead 

of departure from the colony (ca. July/August) or after arrival in the spring (ca. February-April). More 

information on the size of the tags, tag models and weight increments for birds tagged can be found in 

Thaxter et al. (2021). 

Individual adult LBBGU were captured at the nest site using a walk-in wire-mesh cage trap or a remote 

release noose. Tags were then attached under license from the BTO Special Methods Technical Panel 

(SMTP), primarily using a wing-loop harness that has previously been used successfully for LBBGU 

(Thaxter et al. 2016; Shamoun-Baranes et al. 2017). Initial work at the first site studied, Orford Ness, 

also conducted trials of harness and tag attachments for different harness configurations (Thaxter et 

al. 2014). All harnesses were constructed from 6.35 mm tubular Teflon ribbon (Bally Ribbon Mills, 

Pennsylvania, USA) to minimise abrasion and included a braided nylon core for strength. Initial 

deployments of tags used a ‘permanent’ harness design, however, from 2016 onwards, harnesses were 

modified to include a cotton weak-link element, allowing safe detachment of the tag, after an expected 

period of approximately two years (Clewley et al. 2022). A requirement of the SMTP license was all 

additional attachments (colour ring, harness and device combined) must be < 3% of individual body 

mass at time of capture to minimise the risk of negative effects of tagging (Geen et al. 2019). There 

was no effect of tags and their attachment on adult survival or breeding success identified through 

comparisons of tagged birds to a separate cohort of control birds in all studies (e.g. Thaxter et al. 2016).  
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Figure 1. Lesser Black-backed gull data used to estimate the at-sea distribution of birds from 

UK colonies. (a) Colony size and location data from the Seabird 2000 census of colonies. Point 

size is proportional to the number of apparently occupied nests. (b) Tracking data of tagged 

individuals (2010-2020) from nine colonies in the UK (England, Wales, Scotland and Northern 

Ireland). Colony locations are depicted by triangles for: Isle of May (MA; 2019-2020), Craigleith 

(CR; 2019-2020), Fidra (FI; 2019-2020), Belfast (BE; 2018-2020), Walney (WA; 2014-2020), Barrow 

(BA; 2016-2019), Ribble (RI; 2016-2020), Skokholm (SK; 2014-2017) and Orford Ness (ON; 2010-

2015).  

 

Colony data 

Numbers of apparently occupied nests (AON) of Lesser Black-backed Gulls (Fig. 1(a)) were extracted 

from the Seabird Monitoring Programme (SMP) database, prioritising the Seabird 2000 (Mitchell et al. 

2004) survey of seabird colonies in Britain and Ireland (conducted between 1998 and 2002). It is 

acknowledged that many sites across the UK have seen large changes in numbers of gulls, such as at 

traditional coastal colonies and increase in urban locations (Ross-Smith et al. 2014), and further 

information on the AONs is available from more recent SMP monitoring data, such as for key sites 

covered in SMP. However, the SMP ongoing annual surveys for both natural and urban nesters is still 

considered uncertain for production of trends (JNCC 2021) and consequently census data should 

ideally be relied on for complete UK modelling perspective. The next seabird census is being conducted 

at present, and data were currently incomplete for inclusion within this work. The previous census 

(Seabird 2000) also included coverage of urban areas. Given the importance of including urban 
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locations for LBBGU, these urban colony counts were included within the current study for use within 

the modelling process. 

 

Environmental data 

A total of 10 environmental datasets were sourced and collated (Table 2), as detailed in Wakefield et 

al. (2017). These were (1) depth, (2) seabed slope, (3) minimum distance to coast, (4) proportion of 

gravel in sediment, (5) sand:mud ratio in sediment, (6) potential energy anomaly (PEA), (7) proportion 

of time during which the water column is stratified, (8) sea surface temperature (SST), (9) thermal front 

gradient density (TFGD), and (10) net primary production (alpha-chlorophyll). These covariates have 

been previously identified as having potential mechanistic links to different aspects of seabird ecology 

(Wakefield et al. 2017). Given that the time-span of the LBBGU tracking data used in this study (2010-

2020) exceeded Wakefield et al. (2017) (2010-2014), we updated and replaced (deprecated) datasets 

where possible. The above 10 variables were obtained from four separate data sources:  

(a) ETOPO2 Global Relief 2v2, originally provided by the U.S. Department of Commerce, National 

Oceanic and Atmospheric Administration, National Geophysical Data Center (2006) is now 

deprecated and has been replaced by a higher resolution 1v1 1 arc-minute dataset 

https://www.ngdc.noaa.gov/mgg/global/; this dataset was used for depth and seabed slope 

(variables 1, and 2) and is described in more detail in NOAA (2021).  

(b) The British Geological Survey 1:250,000 scale sediment map (Edina digimap 

http://digimap.edina.ac.uk), was used for estimating variables 4 and 5, further translated to a 

numerical categorical scale (see below).  

(c) The UK Met Office FOAM AMM reanalysis dataset (http://marine.copernicus.eu/) (EU Copernicus 

Marine Service Information, 2021) was used by Wakefield et al. (2017) to estimate the next 

variables: (6) potential energy anomaly (PEA), and (7) proportion of time water column stratified 

(following Carroll et al. 2016). The same portal is available but the dataset originally used has also 

been superseded by a single dataset “NWSHELF_MULTIYEAR_PHY_004_009” and carry the same 

grid resolution (ca. 7 km) as in Wakefield et al. (2017). We used the UK Met Office Forecasting 

Ocean Assimilation Model Atlantic Margin model via the MyOcean website 

(https://resources.marine.copernicus.eu/), which contains the necessary key variables of 

potential salinity and temperature through the water column (3D netcdf dataset) that can be used 

to derive PEA and the time water column stratified. 

(d) Finally, the remaining four variables (7-10) were extracted from the Natural Environment Research 

Council Earth Observation Data Acquisition and Analysis Service (NEODAAS), 

https://data.neodaas.ac.uk. The SST data was extracted through an online visualisation tool 

(https://data.neodaas.ac.uk/visualisation/); a variety of sensors can also be specified to create a 

composite image, but including the Advanced-very high resolution radiometer (AVHRR). Here a 

multi-sensor ‘ocean temp’ indicator was used with NASA JPL data provider (global), using a daily 

interval (Version 4, NRT Refined, L4 analysis), with a resolution of 1 km (temporal data range: 2002-

06-01 to 2021-08-22). Similarly, alpha-chlorophyll net primary productivity was extracted through 

the above visualisation tool using a multi-sensor ‘ocean colour’ indicator, provided by ESA CCI 

(global), using a daily interval (Version: Refined-OC-CCI-v5) at a resolution of 1 km (temporal data 

range: 1997-09-04 to 2020-12-31). This dataset included the long-running European Space Agency 

Ocean Colour Climate Change Initiative (OC-CCI) product (Sentinal 3A and 3B). The scale of the 

https://www.ngdc.noaa.gov/mgg/global/
http://digimap.edina.ac.uk/
http://marine.copernicus.eu/
https://resources.marine.copernicus.eu/
https://data.neodaas.ac.uk/
https://data.neodaas.ac.uk/visualisation/
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accessed data was mg/m3 for daily maps. For fronts, the AVHRR 11 μm processed by the 

Plymouth Marine Laboratory Remote Sensing Group (Peter Miller Pers. Com.). Strong front maps 

were obtained from the NEODAAS Multiview tool (https://data.neodaas.ac.uk/multiview/) as 

seven-day composite images. Together, this data source satisfies the variables of SST, thermal 

front gradient density (TFGD), following Scales et al. (2014) and Miller and Christodoulou (2014), 

and net primary production (NPP). It should be noted that there are often many sensors available 

for SST and net primary production; here it was assumed a multi-sensor approach was best. 

Data preparation 

Tracking data 

Tracking data were extracted and combined from two online repositories: (1) the UvA-BiTS post-greSQL 

online database for the UvA tags, and (2) the Movebank data repository for the Movetech tags. As part 

of the data cleaning process, we removed fixes that used just three satellites to derive the geographical 

location, as these were deemed too imprecise for use in the analysis (Thaxter et al. 2018). We also 

applied a trajectory maximum speed filter of 30 m/s to remove any unrealistic fixes, as this is thought 

to be greater than typical maximum gull flight speeds (e.g. Shamoun-Baranes et al. 2016). On occasion, 

the voltage of some GPS devices dropped too low to continue monitoring of bird movements at 

programmed GPS sampling rates, resulting in a gap in the GPS datetime record until the tag gained 

sufficient re-charge to commence recording again. We used a threshold of five hours for a gap duration 

beyond which we deemed a gap to have occurred, and strings of points were numbered as bursts for 

valid monitoring periods within a tag’s deployment.  

Given the variation in GPS tag sampling protocols, we sought to align the datasets across tag types 

and colonies to a consistent rate to avoid potential sampling biases that could arise. We filtered the 

datasets to 30-minute, 60-minute and 180-minute resolutions using custom R functions and 

investigated the number of birds and fixes obtained (Table 3; Table S1). Such decisions were not 

straight-forward given that the common lowest denominator was a three-hour (180-minute) rate that 

would match the night-time protocol for Movetech tags (see above). Previous assessment of night-

time ranges of birds has suggested they were smaller than daytime ranges as would be expected for a 

diurnal species (e.g. Scragg et al. 2016). However, no new areas were visited by birds in the night 

compared to the day so the only difference between night and day was range contraction (Scragg et al. 

2016). This suggested that, although constituting a sampling bias for Movetech tags, the influence on 

relationships with habitat use are likely negligible at the scales of this study. Furthermore, the colonies 

where such day and night effects were likely greatest (due to the large number of Movetech tags used), 

were Ribble, Belfast and Barrow (Table 1). Birds tracked from Craigleith and Fidra also exclusively used 

Movetech tags, although notably in smaller numbers (Table 1). Ribble, Belfast and Barrow exhibited 

some of the lowest usage of offshore areas across all tracked colonies (see WP4), hence the influence 

of these effects in the modelling are considered minimal. To maximise data availability, and coverage 

across and within colonies, GPS data available at a 30-minute resolution were chosen to be used in this 

study (see Results for further discussion). 

The focus of the spatial modelling in this study was the offshore environment; however, LBBGU can use 

a range of terrestrial, coastal, and marine habitats. Therefore, for this study we identified fixes that were 

truly ‘offshore’ by using a low-tide shapefile of the UK using simple GIS overlap analyses (using R 

packages ‘sf’ and ‘sp’, Pebesma  & Bivand 2005, Bivand et al. 2013, Pebesma 2018), with fixes marked 

https://data.neodaas.ac.uk/multiview/
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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as a 1 or 0 for offshore or onshore. We also sought to demarcate estuarine locations and small 

tributaries at coastal sites as ‘inland’ that would otherwise be mis-classified through the low-tide shape. 

Consequently, we also used a 2 m isopleth shapefile (GEBCO 2009) derived from sea depth contours 

to mask such fixes as inland and exclude them from being labelled as ‘offshore’; a 2 m contour was 

identified as preferable to other contours for this purpose from trials of inclusion/exclusion under 

different isopleth values. 

For each colony, the GPS data were annotated to indicate whether individual birds were at the ‘colony’ 

or away on central place foraging ‘trips’ to and from feeding areas. For gulls and many other coastal 

species, smaller excursions may be made to nearby bathing pools, estuaries or coastlines (e.g. for 

preening, self-maintenance), and within this perimeter, activities are less likely to be representative of 

‘true’ foraging trips. A perimeter was therefore identified for each colony using bespoke polygons for 

each site based on a combination of (1) expert knowledge from field-workers to specify distribution of 

nests and areas used for non-foraging activities within each gull colony, (2) information on surrounding 

habitats, and (3) direct information of bird movements from the GPS records around the site. For urban 

sites this perimeter was typically at the level of individual rooftops where birds nested, facilitated by 

identified clusters of central place foraging locations. Furthermore, different rooftops were identified 

as the central place location (i.e. ‘colony’) within cities (ca. three locations in Belfast, two in Barrow), 

but were still treated as representative of movements from that city; see Thaxter et al. (2021) for more 

details. For island sites such as Skokholm and the Isle of May, the perimeter of the island plus a small 

25 m buffer (R package rgeos, function ‘gBuffer’, Bivand & Rundel 2021) was taken as the colony 

perimeter (i.e. to include potential rocks near the colony for perching activity). For subsequent 

identification of time spent by birds inland and offshore (see WP4), ‘trips’ were assigned to birds per 

colony and year using the identified colony perimeters described above. Trips were sequentially 

numbered, with fixes at the colony identified as ‘0’. Only locations identified as being away from the 

`colony` were used for modelling in this study; locations at the colony were excluded from analysis. 

The data for each colony was initially extracted from the time that birds first arrived at the colony after 

the non-breeding part of the year, until the last time birds were recorded at the colony. In the case of 

the first tagging year for a colony, this was from the time of tagging to the end of the season. For any 

birds recovered later, or in the case of tag malfunction, the GPS record naturally terminated at a different 

date for that individual. To ensure that the tracking data was most representative of likely breeding 

activity, i.e. incubation or chick-rearing activity, we sought to refine this range of dates further. We used 

site-specific nest monitoring data that were collected as part of the wider data collection protocol; 

these data are normally used to monitor the fate of nests and checks for tag effects through 

comparison of breeding success to control nests, as mentioned above. These checks varied greatly 

across the colonies monitored and the years studied (e.g. from daily to 1-2 times a season – see 

Thaxter et al. 2015, 2019), dependent on risk of disturbance and accessibility to sites (e.g. remote 

locations, urban rooftops). There can also be difficulties in monitoring in particular habitats (e.g. 

coastal locations with tall vegetation), and at particular times of the season (e.g. the late stages of 

chick-rearing when chicks are highly mobile and challenging to assign to a particular nest). The fate of 

the nests to which individual tagged birds belonged to could not always be reliably attained. Therefore, 

where possible, we sought to use wider colony monitoring information at the colony level to gain an 

understanding of the likely wider phases of incubation and chick-rearing for a given colony each year. 

Monitoring typically did not start until incubation had already commenced, so we used hind-cast and 

fore-cast projections to the date of first egg, hatch date, and likely dates of ‘fledging’ based on known 

incubation and chick-rearing periods (BirdFacts 2005), being 24-27 days incubation and 30-40 days for 

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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the chick-rearing period; here we took the maximum of these ranges for each colony. This resulted in a 

range of varying start and end dates per colony, accounting for differences in first egg dates for each 

year and colony. Colonies may also experience complete breeding failure at a given stage in the season, 

related to several factors such as predation, tidal incursion, heat stress, or food resources facilitating 

intra-specific aggression (Ross-Smith et al. 2014). These situations occurred at several colonies in 

some years, such as Walney, Orford Ness, Ribble, and Barrow, and in those situations, no GPS data 

beyond the point of colony failure were included as part of the likely breeding season assessment. This 

approach to identifying likely true breeding phases of the season can be considered precautionary by 

including information on wider nest monitoring beyond those initial tagged birds. However, inevitably 

some nests of tagged birds may have failed (or birds may have re-laid again and failed) within this wider 

period and thus movements that were no longer restricted to central place foraging could still be 

included in this analysis. Further experimental methods to deal with these complexities have been 

applied in another recent study using trip duration under a certain threshold to indicate central place 

foraging – see Thaxter et al. (2021) – but were not used here to maximise the data availability from 

each site given (1) the uncertainty also associated with such further refinement, and (2) the further sub-

sampling of data required in this study to use within the modelling stage (as noted above). 

Colony data 

Colony counts of LBBGU nests (from the Seabird 2000 census) ranged from sites with ~20,000 

apparently occupied nests, to sites with only a single occupied nest. To reduce computational 

challenges with fitting spatial models to a large number of very small colonies, we set a minimum 

colony size of at least 10 apparently occupied nests. This reduced the number of colonies required to 

be modelled from ~1100 to ~400; however, it only excluded <1% of the total overall Seabird 2000 

census count. The effect of this removal on predicting the spatial distributions of LBBGU around the 

UK, and its resulting effect on apportioning, is therefore expected to be very limited. 

Colony locations were provided as either (1) a single point location, or (2) a start and end location of 

the survey. For those colonies consisting of start and end locations, the midpoint was calculated for 

use as the colony’s location in the spatial modelling. Of these midpoint locations (~18% of the total 

colonies), generally the start and end locations were relatively close in space, compared to the scale of 

the spatial modelling and other datasets used in the analysis (90% of these start-end locations were < 

~3 km apart). Reducing these locations to a singular location therefore seemed the most practical 

approach to include these colonies in the analysis. 

Environmental data 

Environmental data processing and visualisation was carried out in R (R Core Team, 2021; version 4.1.2) 

using the packages `fasterize`, ‘googledrive’, ‘raster’, ‘rgdal’, ‘sf’, ‘sp’, ‘terra’, ‘tidync’, and 

`weathermetrics` (Pebesma & Bivand 2005, Anderson et al. 2013, Bivand et al. 2013, Pebesma 2018, 

Ross 2020, Sumner 2020, D'Agostino McGowan & Bryan 2021, Bivand et al. 2022, Hijmans 2022a, 

Hijmans 2022b). The extents of most datasets were cropped to -13 to 6 degrees longitude, and 46 to 

63 degrees latitude. This geographical range was chosen based on the expected UK extent of the 

LBBGU colonies to include for further model predictions and the potential foraging range of LBBGUs. 

Some datasets, such as seabed sediments, did not cover the full range of this spatial extent and so 

were extracted as available.  
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For sea relief, the NOAA ETOP01 dataset was used as an estimate of sea depth. A further derived layer 

of change in sea-bed relief was also calculated to provide an up-to-date estimate of ‘seabed slope’ from 

this dataset.  Land locations were masked as zero for this analysis and negative relief values translated 

to positive values. 

Following Wakefield et al. (2017), the seabed substrate database was translated into categorical scales 

for two variables of sand:mud ratio and gravel proportion. We converted the shapefiles to 1 km LAEA 

rasters and then applied a 5 x 5 mean smoothing filter using R package raster (function ‘focal’). We 

used the “LEX_ROCK” attribute of the shapefile data layer, as stated by Digimap as being the two-part 

code used to label each polygon of the Geology Digimap data. The LEX_ROCK codes matched those 

listed in Wakefield et al. (2017).  

For potential energy anomaly (PEA) and mixed layer depth covariates, multiple products were 

downloaded from the Copernicus Marine Service dataset. We followed previously available Python 

scripts available from Plymouth-lab to estimate the PEA, using Python libraries of `numpy` and 

`matplotlib.pyplot`. For potential temperature and salinity 3D products, 24 bins at depths of 0 to 5000 

m were extracted for the potential energy anomaly calculations (below), as well as a separate dataset 

of mixed layer depth as a single 2D dataset: ‘ocean_mixed_layer_thickness_defined_by_sigma_theta’, 

as defined in Kara (2003, reference depth at 3 m instead of 10 m). For estimating the PEA, we used the 

method outlined in Carroll et al. (2016), defined as the energy per unit depth to mix the water column, 

i.e. the intensity of thermohaline stratification (Holt et al. 2010). The formula for estimating PEA (φ) is 

defined in Carroll et al. (2016) as: 

 

 φ = −
𝑔

ℎ
 ∫ 𝑧 (𝜌(𝑇(𝑧), 𝑆(𝑧)) − 𝜌(�̅�, 𝑆̅))  𝑑𝑧

0

𝑧= −ℎ
 

 

where, g = gravitational acceleration, h = water depth (or 400 m if h exceeds this, Carrol et al. 2016), z 

= the vertical coordinate (0 indicating the surface, negative values indicating deeper water), ρ = density 

(calculated using a polynomial function - Jackett et al. 2006, Feistel 2003), T = temperature, S = salinity; 

here the overbar indicates that the quantity is averaged from h to the surface. Further, as data were 

available for discrete depths, the integral was evaluated numerically using Simpson’s rule as per Carroll 

et al. (2016). This PEA formula gives units of mechanical energy (J) m-3, and is zero for a fully mixed 

water column, positive for stable stratification and negative for unstable stratification. In other studies, 

Carrol et al. (2016), Holt et al. (2010) and Wakefield et al. (2017), for convenience φ is defined to be 

positive only, for stable stratification. Higher values indicate stronger stratification. 400 m was chosen 

to represent a consistent comparison between conditions on and off-shelf while also revealing potential 

deep water mixing and subsequent changes (Holt et al. 2010). Wakefield et al. (2017) also represent 

the PEA variable in the appendices raised to the power of 0.5, i.e. sqrt-transformed. PEA calculations 

thus used the accessed information on modelled salinity and temperature through the water column 

(up to 5000 m) to estimate in situ density.  

For mixed layer depth (MLD), Wakefield et al. (2017) followed methods of Monterey and Levitus (1997), 

which expresses a threshold choice in terms of density change in relation to thermal expansion and 

thus assigns a threshold of 0.5 °C; this is stated in Kara et al. (2003). However, Kara et al. (2003) use a 

slightly different definition, where the MLD is when density has changed by a fixed amount, i.e. not 

directly through temperature. The consequence is that the MLD field is deeper with the Kara approach, 



 

17 
 

with a larger temperature difference criterion of 0.8°C, and also allows for convective mixing to remove 

instability from density profiles; the mixed layer depth variable using the Kara et al. (2003) approach 

was available through the Copernicus Marine Service dataset as a netcdf file (‘cmems_mod_nws_phy-

mld_my_7km-2D_P1D-m’). Sea depth here was first aligned to the extent of MLD to allow matching grid 

cells for further calculation, using the raster package functions ‘rasterToPoints’ and ‘rasterize’. Grid 

cells were flagged as stratified if the mixed layer depth was less than the maximum water depth, and 

then the mean proportion of days during which stratification occurred was calculated, which results in 

a proportional variable bounded 0 to 1 (Wakefield et al. 2017).  

The sea surface temperature and alpha chlorophyll data were processed and cropped to the same 

geographical extent as above, to provide daily raster layers of each variable for further use in the 

modelling. The units of sea surface temperature data were also converted from Kelvin to Celsius, to 

match the data used in Wakefield et al. (2017). 

For thermal fronts, the seven-day composite .png Strong Front images from the NEODAAS Multiview 

portal (NW Europe area) were first downloaded and stored; maps were obtained in Mercator-projection 

so were first converted to geographical WGS84 using the appropriate mathematical transformation. 

This was achieved based on the map width and height pixel count, known longitude (-15, -13 degrees) 

and latitude (47, 62.999108 degrees) extents at the edges of the .png, and trigonometry; note this extent 

was later cropped to the main extent listed at the start of this section across covariates. As all .png 

files were on the same geographical extent, a base raster was determined to map all pixels onto the 

same grid. Daily seven-day composites were compiled to a raster stack (mosaic for the March to 

August period per year, at a resolution of ca. 1.2 km using R package raster (function ‘stack’) and stored 

as GTiff files using the terra package (Hijmans 2022b). Pixel map units were translated to real front 

metrics using the known translation from .png image units (0-256) using raster::values(r) * 0.001 to 

obtain values on the scale of °C km-2. There are three main variables that can be derived from the front 

maps as accessed, for further use in habitat use analyses – see Scales et al. (2014) – namely: front 

density, distance to nearest fronts, and seasonal persistence of fronts over a given time frame. Here, 

we followed Wakefield et al. (2017) and modelled the density of fronts, over the time frame used in the 

analysis, thus approximating a combination of density and persistence. We used a Gaussian smooth 

of 5 pixels to reveal front patterns more clearly (Scales et al. 2014, Wakefield et al. 2017), achieved 

using R package spatialEco (Evans 2021) function ‘raster.gaussian.smooth’ (n = 5 pixels, sigma = 2). 

For simplicity of presentation among other covariates, maps were also tested through translation to a 

Lambert equal-area projection (see also Wakefield et al. 2017). 

Across the study area, the minimum distance to the nearest coastline was also calculated in R. This 

was carried out using a coastline map of Europe, at a resolution of 0.5 km (as in Wakefield et al. 2017). 

As the Wakefield et al. (2017) models did not extend to incorporating dynamic covariates varying 

through time, dynamic environmental covariates (covariates 6-10 in Table 9) were processed further to 

produce the final covariate maps used in the spatial modelling. LBBGU tracking data were available 

from 2010-2020, and covered the breeding period months of May, June, July, and August (see previous 

section 2.2.1). Dynamic environmental datasets (available at daily or monthly resolutions) were 

therefore averaged to obtain the mean of these data layers during the months of May-Aug, in the years 

2010-2020. 
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Table 2.  Processed environmental data available for use in the spatial models of Lesser Black-

backed Gull distribution. Shown are the names of the 10 environmental datasets considered, 

their units, spatial resolution, and (for dynamic covariates) the time period covered. 

 Name of environmental data type Dates Units Resolution 

1 Depth - m 1/60° 

2 Seabed slope - ° 1/60° 

3 Minimum distance to the coast - km 0.5 km 

4 Proportion of gravel in sediment - - 1 km 

5 
Ratio of sand:mud in sediment 

 
- - 1 km 

6 Potential energy anomaly (PEA) 
May-Aug, 

2010-2020 
J/m3 

~ 7km 

(0.111 x 0.0667 

°) 

7 
Proportion of time during which water 

column stratified 

May-Aug, 

2010-2020 
- 

~ 7km 

(0.111 x 0.0667 

°) 

8 Sea surface temperature (SST) 
May-Aug, 

2010-2020 
°C 1 km 

9 Thermal front gradient density (TFGD) 
May-Aug, 

2010-2020 
°C km-1 ~ 1.2 km 

10 Net primary production 
May-Aug, 

2010-2020 

mg/m3 / 

day 
1 km 
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Modelling approach 

Colony-specific habitat use 

As in Wakefield at al. (2017), the processed GPS tracking data were first subsampled to select 24-hour 

bursts of locations to be used in the spatial modelling. This approach ensures that the amount of 

modelled data is equal across each tagged bird, and is not biased by tagging duration or individual trip 

duration. This was implemented by, for each tagging year at each colony, randomly selecting a 24-hour 

burst of at-sea GPS locations per tagged bird. Birds which had less than 24 hours of tracking data were 

removed from analysis. 

The colony-specific habitat use of LBBGUs was modelled using an approach similar to that presented 

in Wakefield et al. (2017), where habitat use was modelled as a function of habitat accessibility, 

competition, and environmental conditions. Specifically, the intensity of tracking locations in a given 

location is modelled as a function of several explanatory covariates. We used the same approach 

implemented in Wakefield et al. (2017), whereby a Poisson point process is used to model the intensity 

of locations. This is implemented by constructing a regular LAEA (Lambert Azimuthal equal area) grid 

across the study area and fitting a weighted GLMM, 

𝜆𝑘,𝑖  ~ Poisson (𝜇𝑘,𝑖) 

log(𝜇𝑘,𝑖) = offset (log(𝑛𝑘)) +  𝛽0 + ∑ 𝑥𝑖,𝑗𝛽𝑗

𝑚

𝑗=1

+ 𝑢𝑘 

where 𝜆𝑘,𝑖 is the intensity of locations of birds from the kth colony at point i in space, and 𝜇𝑘,𝑖 is the 

expected number of tracking locations at sea per bird per day per unit area from the kth colony. The 

expected number of tracking locations 𝜇𝑘,𝑖 is then considered a function of: an intercept term 𝛽0, an 

offset term 𝑛𝑘 for the number of birds tracked from each colony k, a random colony-level effect 𝑢𝑘 to 

account for differences between colonies, and a vector of explanatory covariates. 

The weighting adjusts for variations in sample sizes between colonies, in order to ensure that data from 

colonies with small sample sizes, at which area use may not be fully characterised, are given less 

weight in determining relationships that the data from colonies with larger sample sizes. 

To consider habitat accessibility in the models, and to estimate the colony-level random effects, it was 

necessary to consider the area of sea which is accessible to each colony. Following Wakefield et al. 

(2017), we considered accessible area as lying within dmax of the colony location, where dmax is defined 

as 1.1 x the maximum foraging range observed in the tracking data used in this study. For LBBGU, this 

provided a dmax of 675 km. Multiplying the maximum observed distance from the colony by 1.1 provides 

a buffer around the maximum expected foraging range (Wakefield et al., 2017). 

To implement the models, analyses were conducted on a quadrature grid, using the LAEA projection 

for all datasets. Relative to the species modelled in Wakefield et al. (2017) (shag, kittiwake, razorbill, 

guillemot), the LBBGU data were of coarser time-resolution (30 minute vs. 100 second), and less 

individuals had available bursts of at-sea tracking data (due to high land use). To account for this, and 

to fit models within computationally practicable timescales, a grid size of 10 km was chosen for the 

analysis of LBBGU habitat use conducted here. 



 

20 
 

All analyses and modelling were carried out in R (version 4.2.0; R Core Team, 2021), and GLMM models 

were fit using the R package ̀ lme4` (Bates et al., 2015). For further details of the statistical methodology 

and background, see Wakefield et al (2017). 

Explanatory covariates 

Several stages of modelling were carried out, following the approach adopted in Wakefield et al. (2017), 

to incorporate explanatory covariates. In order, the incorporation of these covariates allowed us to 

construct models that estimated the relationship between LBBGU habitat use and (1) colony distance, 

(2) area of available sea, (3) competition, and (4) environmental covariates. 

First, as it is assumed that usage of areas will decline as distance from the colony increases (due to 

central-place foraging theory), distance to the colony d was added as the first potential explanatory 

covariate (Wakefield et al., 2017). Second, it is assumed that, due to variations in coastal geometry and 

competition between colonies to access at-sea habitats, the availability of sea to birds from different 

colonies is likely an important factor in defining distribution (Wakefield et al., 2017). Thus, we 

considered the cumulative area A of available sea to different colonies as the second potential 

covariate to be included in the models. Following Wakefield et al. (2017), this covariate was log-

transformed to reduce collinearity between A and d. 

The third group of potential covariates to be included were those relating to competition. It is assumed 

that the habitat use of seabirds may be related to the number of breeding birds present at, or nearby to, 

the colony (Wakefield et al., 2017). Similar to Wakefield et al., (2017) we calculated a number of metrics 

summarising potential “sympatric competition”: (1) the number N of apparently occupied nests within 

range d of the colony, (2) √𝑁, (3) N weighted by inverse-distance, (4) √𝑁 weighted by √𝑖nverse-distance, 

(5) √𝑁 weighted by inverse-distance, and (6) N weighted by √𝑖nverse-distance. As in Wakefield et al. 

(2017), we considered the addition of each of these terms as singular terms and as interaction terms 

with the cumulative area log(A). See Wakefield et al. (2017) for further details and justifications of each 

of these variables. Further, it is possible that the density of birds at-sea is an important factor in defining 

distribution, as birds may avoid particular locations where the density of birds from other colonies is 

high (termed “parapatric competition” in Wakefield et al. (2017)). As in Wakefield et al., (2017), we used 

the best-fitting model at this stage to predict the ratio ρh,i of the intensity of locations 𝜆ℎ,𝑖 from the focal 

site h, relative to the sum of those from all other sites within range (∑ 𝜆𝑘,𝑖𝑘≠ℎ ), and considered this as a 

covariate within the models. 

In the calculations above, to follow Wakefield et al. (2017), there was a need to calculate distance by 

sea, in particular for the calculations of accessible habitat from each colony. In Wakefield et al. (2017), 

as the seabird species studied almost exclusively avoided land, distance by sea was calculated using 

a UK coastline outline with a high penalty for crossing land. For LBBGUs this approach is not as 

appropriate, due to the high use of terrestrial habitats and the observation that many tagged individuals 

crossed large areas of land to reach more distant marine habitats (Fig. 1(b)). To implement these 

models, in as similar an approach as possible to Wakefield et al. (2017), we instead used an internal 

(inland) buffer of 20 km of the UK coastline. This approach allowed unpenalised movement across land 

outside the buffer, but prevents the model allowing movement across the buffer (i.e. stops spillover in 

predicted distributions between the east and west coasts of the UK). The size of this buffer was chosen 

after considering different buffer size of 10, 15 and 20 km; 20 km seemed the most appropriate choice 

given the large areas of land covered by many tracked LBBGUs. The use of this buffer resulted in the 
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exclusion of three (untagged) colonies from the analysis, as they were considered too far from the true 

coastline to access marine habitats. 

In the last stage of modelling, environmental covariates were considered. Following Wakefield et al. 

(2017), ten environmental covariates (Table 2) were considered as potential indices describing LBBGU 

habitat use. To first determine the order in which to add environmental covariates to the model, the 

best-fitting model at this stage was used to fit a model with each environmental covariate singly; 

environmental covariates were then added in order of the expected improvement in BA score in the 

model, from largest to smallest (Wakefield et al., 2017). Different transformations (log, square-root, 

squared) of each of the environmental covariates were also fit when each environmental covariate was 

included. To account for potential differences in habitat (environmental) variability between colonies, 

we also considered interaction terms between each environmental covariate and its expected value at 

each colony. This was implemented through calculating the covariate’s mean in waters accessible from 

each colony (i.e. habitat within dmax), as described in Wakefield et al. (2017). All covariates were 

standardised prior to model fitting. 

Model selection 

Model selection followed the same approach as Wakefield et al. (2017), where covariates were added 

sequentially in the order described above. Due to the large size and computational challenges of fitting 

such complex spatial models, stepwise forward model selection was considered to be the most 

practical approach. At each stage, models were evaluated using cross-validation. Each colony was, in 

turn, left out from the model, and the observed utilisation distribution of birds from that colony was 

compared to the predicted utilisation distribution from the model fit using the remaining colonies 

(Wakefield et al., 2017). The weighted Bhattacharyya affinity (𝐵𝐴̅̅ ̅̅ ) was calculated between the observed 

and predicted utilisation distributions, 

𝐵𝐴̅̅ ̅̅ =  
∑ 𝑛𝑘 𝐵𝐴𝑘𝐴𝑙𝑙 𝑘

∑ 𝑛𝑘𝐴𝑙𝑙 𝑘

 

where 𝐵𝐴𝑘 is the Bhattacharyya affinity for colony k, and 𝑛𝑘 is the number of tracked birds from colony 

k. Colonies with larger numbers of tracked birds are therefore given an increased weighting in this 

calculation, as it is assumed that the utilisation distribution of colonies with smaller numbers of tracked 

birds is likely to be an underestimate of the true full area used by the entire colony (Bogdanova et al., 

2014; Wakefield et al., 2017). At each step, covariates were retained within the model if they resulted in 

an increase in 𝐵𝐴̅̅ ̅̅ ; if the 𝐵𝐴̅̅ ̅̅  was equal between models, the simpler model was selected. BA (and 

weighted BA) ranges from 0 (indicating no similarity) to 1 (identical utilisation distributions). 

Estimating usage 

The best-fitting model (as determined by improvement in 𝐵𝐴̅̅ ̅̅  score) was used to estimate LBBGU at-

sea density from each of the Seabird 2000 colony sites. Colony densities were also combined to 

estimate a population-level utilisation distribution across the study area, where utilisation distributions 

from individual colonies were multiplied by colony size (number of apparently occupied nests) to obtain 

the overall population-level distribution. To quantify uncertainty, we followed Wakefield et al. (2017) in 

carrying out a parametric bootstrap. For the best-fitting model, we assumed a multivariate normal 

distribution and generated 10 random sets of fixed-effects parameters, predicted the utilisation 

distributions using these parameters, and then calculated the coefficient of variation (CV). Note, 
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however, that this approach is likely to underestimate uncertainty, potentially substantially, because the 

models do not account for residual spatial autocorrelation, and so the results (particularly the absolute 

levels of uncertainty) should be treated with considerable caution. 

Comparison with existing apportioning approach 

To compare the new models used here against the assumed spatial distribution that underpins the 

existing approach (the NatureScot apportioning tool), utilisation distributions were generated and 

mapped for some example colonies. Utilisation distributions with the core 50%, 75% and 90% of 

estimated usage were calculated using the predictions from the LBBGU distribution models developed 

in this study. These were compared to some illustrative utilisation distributions to represent the 

assumptions that underpin the NatureScot apportioning tool approach, by using the same spatial grid 

to plot the potential density (and utilisation distribution) generated when assuming that the distribution 

of birds at sea is proportional to the inverse of distance by sea to colony squared (rescaled to sum to 1, for 

comparison). Note that this is not a comparison against the results actually obtained using 

SNH/NatureScot apportioning (as that does not explicitly have a utilisation distribution associated with it), 

but against the assumption of an inverse distance squared relationship to distance from colony that 

provides the rationale for the SNH/NatureScot apportioning tool. 
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Results 

Tracking of lesser black-backed gulls 

Tracking data from a total of 207 birds were available for potential inclusion within the modelling. The 

selected rate of 5 minutes included more fixes (nearly 1.5 million), but fewest colony spread and 

number of individuals (given largely being limited to UvA-BiTS data). Alternatively, rates of 180 and 60 

minutes included the same number of individuals and most spread across colonies, but greatly reduced 

the number of fixes available for the modelling. Therefore, the 30-minute rate was selected (167 birds, 

eight colonies, 49,562 offshore fixes). Note, this 30-minute rate resulted in a reduced number of fixes 

and birds for Barrow and Belfast (Table 3); however, these sites also exhibited some of the lowest 

proportions of offshore usage (Table S1). 

 

Table 3. Total number of individual (unique) birds available per colony after filtering GPS data 

to common rates of five, 30, 60 and 180 minutes, to assess potential sample sizes for inclusion 

in the modelling. 

Colony / filter rate 5 minute 30 minute 60 minute 180 minutes 

BA (Barrow)  8 10 30 30 

BE (Belfast)  - - 6 6 

CR (Craigleith)  1 3 3 3 

FI (Fidra)  - 3 5 5 

MA (Isle of May)  25 28 28 28 

ON (Orford Ness)  23 24 24 24 

RI (Ribble)  17 26 38 38 

SK (Skokholm)  25 25 25 25 

WA (Walney)  47 48 48 48 

Total birds 146 167 207 207 

 

To standardise the amount of tracking data before modelling, data bursts of 24 hours were randomly 

selected from each tagged individual in each year of tag deployment (2010-2020). By this approach, a 

total of 220 movement bursts were selected from the 30-minute resolution tracking data (Table 4). As 

at least 24 hours of offshore tracking data was required (and many LBBGUs had high use of terrestrial 

habitats), this process resulted in the removal of many individuals from the tracking dataset. In some 

cases, this reduced the number of tracking data bursts available per colony to 0 or 1. Initial model fitting 

with some colonies containing only a single data burst led to challenges in model convergence and 

problems with cross-validation (used here in model selection); colonies which only had a single burst 

of tracking data available were therefore removed from analysis. The final data used in the modelling 

(Table 4) therefore consisted of tracking data from six colonies, with three of the tagged colonies 
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removed (Belfast, Craigleith, Fidra). It should be noted that, for some colonies, the number of tracking 

data bursts available is higher than the number of unique individual LBBGUs tagged (Table 3; Table 4). 

This is because, to improve data availability and coverage across the temporal range of the study, we 

selected bursts from each tagged individual per year (i.e. if a bird was tagged in two years, a burst from 

each year may be selected; Table 1). This approach assumes that any bias caused by selecting the 

same individual multiple times is negligible compared to variation between years. 

 

Table 4. Resulting number of 24-hour GPS data bursts included in the spatial modelling from 

each tracked colony. Also shown are the number of unique individual birds these data bursts 

came from (as some individuals were tracked across multiple years). 

Colony Number of tracking data bursts Number of individual birds 

BA (Barrow)  7 5 

BE (Belfast)  - - 

CR (Craigleith)  - - 

FI (Fidra)  - - 

MA (Isle of May)  30 23 

ON (Orford Ness)  30 19 

RI (Ribble)  7 7 

SK (Skokholm)  38 21 

WA (Walney)  107 44 

Total number: 220 119 
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Models of distribution 

The best-fitting model of LBBGU distribution (Table 5) contained: distance to the colony d, cumulative 

area of available habitat log(𝐴), √𝑁 (a measure of competition), an interaction effect between log(𝐴) 

and √𝑁, and an environmental effect of log(depth). At each stage of forward model selection, the 

inclusion of these variables increased the 𝐵𝐴̅̅ ̅̅  score. Although including log(depth) improved the 𝐵𝐴̅̅ ̅̅ , 

the improvement was relatively small, and so a simpler model with no environmental covariates was 

also included here for comparison. A final decision on which model will be incorporated within the 

apportioning tool, or whether users will be able to select between models within the tool, will be decided 

in WP4. Model assessment by cross-validation estimated a 𝐵𝐴̅̅ ̅̅  of 0.384 (SD = 0.128) for the final model 

with log(depth) and a 𝐵𝐴̅̅ ̅̅  of 0.370 (SD=0.125) for the final model with no environmental covariates. 

Whilst the initial model fitting of singular environmental covariates (to determine the order in which to 

add covariates) indicated that several of the environmental covariates would increase the 𝐵𝐴̅̅ ̅̅  (Table 

S2), after log(depth) was added no further additions improved the 𝐵𝐴̅̅ ̅̅ . 

 

Table 5.  Model parameters and model selection process of the resulting final models. Shown 

are the covariates retained within the final model (name, estimate, standard error and z-statistic). 

Also shown are the weighted Bhattacharyya affinity (𝑩𝑨̅̅ ̅̅ ) scores from the cross-validation 

approach used in model selection. Covariates were added in the order listed below, and model 

selection stopped when the change in 𝑩𝑨̅̅ ̅̅  (∆𝑩𝑨̅̅ ̅̅ ) was no longer positive; √𝑵 and the interaction 

term between log(A)*√𝑵 was added in a single stage, providing a single value for change in BA 

(denoted by the asterisk *). 

 

a) Model with log(depth) 

Covariate Estimate Standard error z 𝑩𝑨̅̅ ̅̅  ∆𝑩𝑨̅̅ ̅̅  

Intercept -17.364 0.804 -21.61 - - 

d -6.751 0.316 -21.34 0.300 - 

log(𝐴) -1.068 0.053 -20.18 0.334 0.034 

√𝑁 -0.646 0.560 -1.15 * * 

log(𝐴) ×  √𝑁 -0.253 0.039 -6.47 0.370 0.036 

log(depth) -0.931 0.034 -27.15 0.384 0.384 

 

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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b) Model with no environmental covariates 

Covariate Estimate Standard error z 𝑩𝑨̅̅ ̅̅  ∆𝑩𝑨̅̅ ̅̅  

Intercept -19.707 0.772 -25.51 - - 

d -8.102 0.344 -23.57 0.300 - 

log(𝐴) -1.270 0.053 -23.74 0.334 0.034 

√𝑁 -1.290 0.488 -2.64 * * 

log(𝐴) ×  √𝑁 -0.650 0.038 -17.11 0.370 0.036 

 

Estimated population-level distribution 

Predictions of LBBGU usage were made for each of the 382 colonies and saved for incorporation into 

WP4. The combined population-level usage map (Fig. 2) shows that gull at-sea usage largely declines 

with distance from the coast. As expected, areas of relatively high usage tended to coincide with areas 

of large, or many, LBBGU colonies (Fig. 1(a)); namely around Walney, off Pembrokeshire, and around 

the central belt of Scotland. Uncertainty in the predicted densities (CV; Fig. 3) generally increased as 

distance from the coast (and from colonies) increased; note, however, the earlier caveat that 

uncertainty may be being underestimated within this approach, so that the results of this should be 

treated with caution. 

t 

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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Figure 2. Cumulative at-sea utilisation distribution (UD) of lesser black-backed gulls in the 

breeding season in Britain and Ireland. Lesser black-backed gull distribution was estimated 

from a spatial model incorporating colony distance, habitat availability, competition, and with 

(top) or without (bottom) environmental variables. Warmer colours represent areas of higher 

usage. Predictions were not made for the areas in grey. The tool will only apply to areas of sea 

within the UK EEZ (white outline). 
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Figure 3. Coefficient of variation (CV) of the at-sea utilisation distribution (UD) of lesser black-

backed gulls in the breeding season in Britain and Ireland for models with (top) and without 

(bottom) environmental variables. CV was estimated by parametric bootstrap using 10 

randomly-generated sets of parameters. Warmer colours represent a higher CV on the estimated 

density. Predictions were not made for the areas in grey. The tool will only apply to areas of sea 

within the UK EEZ (white outline). 
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Comparison with existing apportioning approach 

Example utilisation distributions were estimated for two of the colonies with GPS tracking data: 

Skokholm (Fig. 4) and Orford Ness (Fig. 5). It should be noted that the utilisation distributions produced 

to represent  the NatureScot approach correspond to the inverse distance squared assumption that 

underpins the approach, but the NatureScot approach does not explicitly calculate or use a utilisation 

distribution, so this comparison is designed to evaluate the realism of this assumption rather than the 

actual apportioning values calculated using the NatureScot tool (that comparison will only be possible 

once an adjustment for proportion of time foraging on land has also been applied, in WP4). Note also 

that there is some discussion for gull species as to whether it is most appropriate to apply the NatureScot 

apportioning approach to distance by sea, distance by air, or a hybrid of the two – this will also be evaluated 

more thoroughly in WP4, once the adjustment for proportion of time foraging on land has been applied. 

Given the large potential accessible area by LBBGUs (max foraging range of 675 km), calculating the 

utilisation distribution using the NatureScot approach (density is proportional to 1 /(distance by sea2)) 

leads to the inclusion of many low-density grid cells. The estimated utilisation distribution is therefore 

very sensitive to the cut-off used to exclude grid cells (i.e. when to consider near-zero densities far from 

the colony as zero); the addition of lots of very small densities changes the predicted extent of the core 

areas of the utilisation distribution. We therefore included two different utilisation distributions with a 

range of cutoff values used to exclude grid cells with near-zero densities (Fig. 4(c-d); Fig. 5(c-d)). The 

core areas of the utilisation distribution for Skokholm (Fig. 4(a-b)) estimated using the LBBGU models 

developed here differed from that predicted by the NatureScot approach; they were more localised and 

the overall distribution of the colony is slightly more elongated (Fig. 2), and more closely matching the 

tracking data from this colony (Fig. 1(b)). In contrast, the distributions predicted for the Orford Ness 

colony are quite similar between the different approaches (Fig. 5). 

 

 

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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Figure 4. Utilisation distributions of lesser black-backed gulls (LBBGU) from Skokholm colony. 

(a) Estimated utilisation distribution predicted from a model with log(depth). (b) Estimated 

utilisation distribution predicted from a model with no environmental covariates. (c-d) 

Illustrative utilisation distributions using the NatureScot (1/distance2) approach, using different 

cutoff values for excluding grid cells with near-zero density: (c) 0.001, (d) 0.0001. 
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Figure 5. Utilisation distributions of lesser black-backed gulls (LBBGU) from Orford Ness 

colony. (a) Estimated utilisation distribution predicted from a model with log(depth). (b) 

Estimated utilisation distribution predicted from a model with no environmental covariates. (c-

d) Illustrative utilisation distributions using the NatureScot (1/distance2) approach, using 

different cutoff values for excluding grid cells with near-zero density: (c) 0.001, (d) 0.0001. 
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Discussion 

In this study, apportioning approaches were extended to lesser black-backed gulls, by developing and 

carrying out a method to estimate colony-specific habitat use. The approach used was similar to that 

proposed by Wakefield et al. (2017), using GPS data from tracked colonies to understand the 

relationship between bird habitat use and several covariates, and using this model to predict the 

distribution of birds from untracked colonies around the coasts of Britain and Ireland. This approach 

represents an improvement on the currently used approach, as it incorporates more biological realism 

(measures of competition and habitat availability are incorporated), it is based on tracking data from 

LBBGUs within these colonies, and it is consistent with the approach currently used for other species 

of seabird (kittiwakes, shags, razorbills, guillemots). 

Lesser black-backed gull distribution was found to be related to distance from the colony, habitat 

availability, competition, and the at-sea environment (depth). The best-fitting LBBGU model was 

relatively more similar to those of shags and razorbills in Wakefield et al. (2017), as distribution was 

related to metrics of “sympatric” competition, but not related to the estimated measure of “parapatric” 

competition. Cross-validation, using the weighted Bhattacharyya affinity (𝐵𝐴̅̅ ̅̅ ), indicated that the LBBGU 

models (𝐵𝐴̅̅ ̅̅ = 0.38) performed more poorly than the Wakefield et al. (2017) models for shags, 

kittiwakes and guillemots (𝐵𝐴̅̅ ̅̅ = 0.52 − 0.53), but marginally better than the Wakefield et al. (2017) 

models for razorbills (𝐵𝐴̅̅ ̅̅ = 0.34). 

The approach developed here used LBBGU colony counts and locations from the Seabird 2000 census. 

It is however acknowledged that the methods used within Seabird 2000 and subsequent monitoring, 

predominantly being vantage point methodology (78% counts, others being aerial and ground-based 

surveys, Mitchell et al. 2004), could underestimate number of urban gull populations. Further work has 

investigated the influence of survey methodology in deriving reliable urban gull population estimates 

for urban sites in England and Wales for Herring and Lesser Black-backed Gull (Woodward et al. 2020, 

Burnell et al. 2021b). At the time of writing, a UK-wide set of population estimates for urban areas was 

not yet available, but further studies are ongoing using different survey methodologies within a model-

based approach (Burnell et al. 2021a, b). Further, there have been large changes in the numbers of gulls 

at different colonies over the last two decades, in particular at urban colonies (Ross-Smith et al. 2014). 

Updating the colonies used within this modelling framework, in particular determining a robust and up-

to-date estimate of LBBGU colonies across Britain and Ireland would be a valuable improvement to the 

estimates given here, although we acknowledge that this is not necessarily straightforward. 

Tracking data were available for LBBGUs from nine colonies; however, due to variability in tagging time-

resolutions, the criteria used in selecting suitable data for modelling, the high use of terrestrial areas by 

tagged individuals, and the statistical modelling framework used, only six of these colonies were able 

to be used in the final models of gull distribution. It should therefore be noted that, whilst predictions 

are made for all colonies, these are based on GPS-tracking data from these six colonies. These colonies 

represent a mix of urban, coastal, and island colonies, but are largely based on tracking data from 

coastal and island locations. Whilst this represents the best information that we have on LBBGU 

offshore movements, further tracking data from urban colonies, and from spatial regions with 

limited/no tracking data would help improve our understanding of LBBGU at-sea distribution. The 

modelling of area use of LBBGU also included movements of birds during all behaviours. For example, 

commuting to and from a foraging location over the ocean would also be included in association with 

environmental features. Such relationships are expected to be strongest, however, when birds are 
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actively engaged in searching or foraging activity, hence further refinement to models could also 

incorporate behaviour to more appropriately characterise habitat relationships. 

The analysis adjusted for variations in sample sizes between colonies via weighting, and the data 

collection made use of previous analyses (Thaxter et al., 2017) that aimed to characterise the minimum 

sample size needed to capture area use, but it would be useful to investigate representativeness further,  

not least because we acknowledge that the smaller ranges seen as some of the urban sites may be the 

result of relatively small sample sizes. Simple approaches (e.g. looking at the relation between UD 

contour areas and number of birds for each colony) are not particularly meaningful or feasible in this 

context, in part because the models are too computationally intensive to be refitted many times, and in 

part because the models are not fitted separately for each colony (so that the predicted area use for a 

colony does not depend only on the number of birds tracked at that colony, but also on the total number 

of tracked colonies and the numbers of birds tracked at other colonies). A more thorough evaluation of 

the impacts of different sample designs would therefore be required. 

The models used here quantify seabird distribution in relation to a range of covariates of interest, and 

here we also adapted this model for LBBGUs, allowing movement across areas of land when assessing 

habitat accessibility. Although it may involve substantial statistical development work, and would 

require testing to ensure that the models remain quantitatively robust, one potential improvement to 

these models would be to incorporate the ability to use tracking data of different time-resolutions (e.g. 

to include 5-minute, 30-minute, 60-minute tracking data within the same framework, using fine or 

coarse-scale tracking data as available). This would maximise the use of available tracking data for 

different species. One potential way this could be approached is through including an additional offset 

term within the models, similar to that used to offset densities by the number of tracked individuals at 

each colony. Further work with the existing models could also be carried out to investigate the potential 

effects of other covariates, e.g. density of fishing vessels, which may affect species distribution. As 

part of this work, distance to fronts was also extracted using the methods of P. Miller pers comm (see 

Scales et al. 2014) but for simplicity was not included here for alignment with Wakefield et al. (2017); 

this could also be investigated in further work. Finally, considering the differences observed in colony 

locations, in colony trends, in terrestrial habitat use, and in maximum foraging ranges between urban 

and non-urban gulls, considering a modelling framework where these two groups are considered and 

modelled separately (and then integrated), may be a future research avenue. For example, it is possible 

that the relationship between gull density and marine environmental variables may be different for 

coastal vs. urban gulls. 

Overall, the work carried out in this WP has developed and produced estimates of lesser black-backed 

gull distributions for colonies around Britain and Ireland. Due to the differences in LBBGU use of land 

vs. sea between different types of colonies (e.g. island, urban, coastal), the predicted densities 

generated here will be adjusted by the estimated proportion of time spent foraging on land per colony, 

implemented in the apportioning tool within WP4. 

The comparison against the inverse distance squared assumption that underpins the NatureScot 

apportioning method suggest broad similar patterns between the GPS-based maps and those obtained 

under this assumption, reflecting the strong central place foraging constraint for this species in 

summer months. The distributions do differ, however, and the inverse distance decay squared method 

is sensitive to the choice of cut-off (imposed here as a minimum small probability below which the 

probability is assumed to be zero). The comparison against the NatureScot method, and, in particular, 

the implications of this sensitivity, will be explored more in WP4: after adjustment for proportion of time 

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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spent foraging on land the results of the GPS-based approach can be compared directly to apportioning 

estimates from the NatureScot method. WP4 will also include a simple extension of the NatureScot 

method to allow the rate of decay with distance to be estimated based on published foraging ranges, 

rather than fixed to be equal to minus two, and this extended method will also be compared against the 

GPS-based maps. 

  

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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3. Extending apportioning to winter using 
geolocation data 

Introduction 

A significant challenge with apportioning seabirds in the non-breeding season to protected SPA 

colonies is that standard methods of estimating distribution (i.e. at-sea surveys) provide no information 

on the provenance of birds. As a result, the current method for apportioning in the non-breeding season 

(Biologically Defined Minimum Population Scales or BDMPS; Furness 2015) makes strong and 

unrealistic assumptions about the spatial distribution of birds in relation to colony provenance and 

does not always make use of the most recent available data.  

Bird-borne instrumentation provides information on provenance, and the availability of loggers that can 

be carried by individuals throughout the annual cycle provide new opportunities to undertake 

apportioning of seabirds at sea in winter with greater accuracy.  Geolocation devices have been widely 

used to identify the wintering locations of a range of seabird species from different colonies (e.g. Fort 

et al., 2012; Frederiksen et al., 2012; Glew et al., 2018). Geolocation loggers record ambient light levels 

with day length being used to estimate latitude and the timing of midday relative to GMT being used to 

estimate longitude (Phillips et al., 2004). The loggers have the advantage of being considerably smaller 

and lighter than GPS tags meaning that they can be deployed on a wider range of species for longer 

time periods. However, the reliance on light levels to estimate location in combination with a limited 

number of fixes per day means that there can be considerable uncertainties surrounding the inferred 

locations, in the range of 100-200 km (Merkel et al., 2016). Despite these uncertainties, geolocation 

data can offer valuable insights into the movement and distribution of seabirds of known colony 

provenance during the non-breeding season that could not be obtained using other methods.  

In order to develop data-driven methods for apportioning birds outside the breeding season, a new 

opportunity has arisen from a rich geolocation data set from multiple colonies in the UK for guillemots 

and razorbills (see next section for details). As geolocation data lack the spatial and temporal 

resolution of GPS data, habitat modelling approaches, such as that of Wakefield et al. (2017) are 

markedly more challenging to use. Alternatively, these data can be used to estimate colony-specific 

Utilisation Distributions (UDs) for tracked colonies, and these distributions can then be extrapolated in 

some way to also provide distributions for untracked colonies (e.g. through a weighted average of 

distributions from tracked colonies). These distributions, in combination with estimates of colony size, 

can enable birds to be apportioned back to their breeding colonies in the non-breeding season. 

Modelling of spatial distributions (e.g. colony specific UDs) from geolocation data has similarities with 

the modelling of GPS data, but there are some important differences: 

(a) Geolocation data are much lower frequency than GPS data – typically 1-2 records per day, which 

means detailed modelling of behaviour and local spatial movement is not possible. 

(b) Levels of observation error in geolocation data are much higher than for GPS data, and are 

sufficiently large that models which ignore observation error are unlikely to be defensible. 

(c) The levels of observation error in geolocation data are likely to be heterogeneous, and it seems that 

as they vary according to known factors (e.g. time of year) this variability can be modelled. 

These differences mean that the methods used to build models that can be used to apportion in the 

non-breeding season will necessarily differ from those used in the breeding season.  
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Methods 

Geolocation data description 

Geolocation (hereafter ‘geolocators’; Biotrack model MK3006 and Migrate Technology Intigeo models 

C65, F100 and C65-Super) were deployed on 695 common guillemots (hereafter ‘guillemots’) Uria aalge 

and 339 razorbills Alca torda during three breeding seasons (June-July 2017, 2018 and 2019) at twelve 

breeding colonies around the north of the UK, which were relatively evenly distributed through the 

breeding region of guillemots and razorbills in the UK (Buckingham et al. 2022). The geolocators 

measured light levels, salt water immersion and sea-surface temperature, from which daily locations 

were estimated throughout the non-breeding season. Deployments were made under licence from the 

British Trust for Ornithology. 

Individuals were caught at the nest using a noose pole during late incubation or chick rearing (mid-June 

– early July). Birds were equipped with a unique metal ring (if not already present) and a geolocator 

mounted on a plastic colour ring on the opposite leg. The maximum mass of the geolocator plus colour 

ring (guillemots = 4.8g; razorbills = 4g) comprised 0.63% (guillemots) and 0.79% (razorbills) of the 

minimum body mass recorded in breeding adults of the two species in Britain (guillemots: 765g; 

razorbills: 505g; Wagner 1999, Harris et al. 2000). Adults were recaptured during the 2018, 2019, 2020 

and 2021 breeding seasons, resulting in a deployment duration of one to four years. For analyses, data 

were pooled from three non-breeding seasons: 2017-18, 2018-19 and 2019-20 (Table 6). In all cases, 

handling times did not exceed ten minutes during either device deployment or retrieval. There was no 

concrete evidence that the tags had any adverse impacts on the birds’ behaviour. Observations of birds 

following logger deployment was that they returned to normal breeding behaviour soon after release. 

However, it was not possible to monitor all birds post-release in a systematic way because they would 

have increased disturbance. At retrieval, all tagged birds were examined for any leg injury caused by 

tags or colour rings they had been carrying, and no injuries were observed.  It was not possible to 

quantify the potential effect of carrying the logger on foraging efficiency and demographic rates such 

as productivity and survival. However, three tagged birds were found dead on the shore over the 2017-

18 winter, and it was important to establish whether this was a higher than expected number. Typically, 

under 10% of adult guillemots and razorbills will die each year. Since 436 birds were tagged in 2017, we 

would expect ~40 of those to die the following winter. The reporting rate of ringed guillemots and 

razorbills that die is approximately 10%, so we would have expected approximately four of the 40 birds 

that die to be reported, which is close in number to the three found dead on the shore. This suggests 

that the presence of the colour ring and tag did not have a measurable impact on survival. 
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Figure 6. Tracked colonies (triangles) and Seabird 2000 sites (circles) for each species (common 

guillemots and razorbills). Seabird 2000 sites are coloured by the nearest tracked colony within 

270km whilst grey circles indicate colonies that were further than 270km from the nearest tracked 

colony. Size of the Seabird 2000 site indicates the number of breeding adults at that colony, which we 

converted to number of breeding adults by multiplying by 0.67 (to estimate the number of pairs) and 

doubling (Mitchell et al. 2004). 
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Table 6. Number of geolocators deployed and retrieved for each species (G = common guillemot, R = razorbill), colony and year. 

  
Deployed   Retrieved Retrieval 

rate (%) 2017 2018 2019 2020 Total 
 

2018 2019 2020 2021 Total 

Puffin Island G - - 25 - 25   - - 8 4 12 48.0 

Colonsay 
G - 30 30 - 60 

 
- 14 29 3 46 76.7 

R - 9 - - 9   - 1 - - 1 11.1 

Treshnish 
G - 20 30 - 50 

 
- 12 19 4 35 70.0 

R - 20 - - 20   - 12 1 2 15 75.0 

Canna 
G 90 40 11 - 141 

 
37 26 - 6 69 48.9 

R 20 22 - - 42   4 16 - 3 23 54.8 

Shiants R - 20 - - 20   - 13 - - 13 65.0 

Foula 
G 40 - - - 40 

 
13 - - - 13 32.5 

R 10 - - - 10   1 - - - 1 10.0 

Fair Isle 
G 25 - - - 25 

 
10 5 - - 15 60.0 

R 21 - - - 21   9 2 - - 11 52.4 

Orkney R 30 22 - - 52   4 10 - - 14 26.9 

East Caithness 
G 40 40 30 - 110 

 
18 27 30 4 79 71.8 

R 30 30 - - 60   13 7 2 2 24 40.0 

Whinnyfold G 40 40 30 - 110 
 

24 27 25 9 85 77.3 
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R 20 19 - - 39   2 8 - - 10 25.6 

Isle of May 
G 30 34 36 30 130 

 
10 22 27 5 64 49.2 

R 30 30 - - 60   11 11 - - 22 36.7 

Farnes 
G 4 - - - 4 

 
1 - - - 1 25.0 

R 6 - - - 6 
 

3 1 - - 4 66.7 

Total 
G 269 204 192 30 695 

 
113 133 138 35 419 60.3 

R 167 172 0 0 339   47 81 3 7 138 40.7 
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Statistical methods for analysis of geolocator data  

Deriving spatial locations from geolocator data 

Two locations per day were derived from the geolocators using the R package ‘probGLS’ (Merkel et al. 

2016) following the methods from Buckingham et al. (2022). ProbGLS uses an iterative algorithm to 

determine the most likely track based on light, salt water immersion and temperature data sampled by 

the geolocator. This method of combining several data types has been shown to reduce the amount of 

error associated with geolocation (Phillips et al. 2004; Halpin et al. 2021) and allows locations during the 

equinox to be estimated (approximately: autumn: 23rd September, spring: 20th March) and surrounding 

periods, unlike methods that solely rely on light data. The ‘prob_algorithm’ function was run using 100 

iterations (Dunn et al. 2020; Buckingham et al. 2022).  

The use of multiple iterations within probGLS is designed to capture the error associated with estimating 

spatial locations from the GLS data. For each GLS observation, at each iteration, the twilight time and 

solar angle are simulated from distributions that are designed to capture the uncertainty in these 

quantities: the resulting simulating twilight time and solar angle are then used to derive a simulated 

location associated with each observation within each iteration. Looking across all iterations gives a cloud 

of points, representing the locational uncertainty associated with that GLS observation. This approach is 

then applied across the whole track, to capture the locational uncertainty associated with each track.  

Kernel density estimation  

To estimate the density of birds from each colony within the tracked range, the utilisation distribution for 

birds from each tracked colony during each month of the non-breeding season (July – March) was 

calculated. We used kernel density estimation, implemented via the ‘kernelUD’ function in the R package 

‘adehabitatHR’ (Calenge 2006), with bivariate normal kernels and ad-hoc smoothing and a grid cell size of 

100km2. Kernel density estimation is designed to estimate the spatial distribution from the data in a way 

that assumes that the distribution varies smoothly over space, but, otherwise, makes relatively few 

assumptions. This differs, for example, from the habitat association models used in the analysis of GPS 

data for lesser black-backed gulls, as the habitat association models attempt to link the spatial 

distribution to explanatory variables – the habitat association modelling approach has the potential to be 

more generalizable (i.e. it provides a basis for using the model to directly predict distributions at untracked 

sites, as in Wakefield et al., 2017) but also relies on stronger assumptions. The rationale for using kernel 

density estimation, rather than habitat association modelling, to model the GLS data is that non-breeding 

season distributions of seabirds will typically be harder to relate to explanatory variables (because the 

central place foraging constraint means that distance to colony is typically strongly related to the spatial 

distribution in the breeding season), and that the high level of locational uncertainty in the GLS data would 

also make it difficult to identify relationships with explanatory variables.  To determine whether sample 

sizes were sufficient to capture colony- and year-specific distributions for 2017-18 and 2018-19, 

Buckingham et al. (2022) conducted a bootstrapping procedure whereby they calculated 50% kernel 

density contours for each dataset, following the above methods, using randomly sampled selections of 

birds and allowing individual replacement, starting with a sample size of 1 bird and increasing until the 

total number of birds for that dataset had been reached. This step was repeated 1000 times. The point 

where the increase in the median kernel contour area used (km2) levelled off was then determined for 

each dataset. Any datasets where this point was not reached, indicating they did not have confidence that 

the sample size of tracked birds was sufficient to reliably estimate the core distribution of individuals 
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from that breeding colony for that period in the given year, were eliminated.  This was the case for 

guillemots on Farnes, and razorbills on Farnes, Foula and Colonsay. The findings of Buckingham et al. 

(2022) were used here to inform the selection of colonies for kernel analysis based on samples sizes of 

all three study years combined, allowing razorbills on Farnes to be added to the suite, but not Farnes 

guillemots, Foula razorbills or Colonsay razorbills. 

Accounting for uncertainty 

The kernel density estimation approach could be applied only to the “most probable track” (which can be 

extracted from the results of “prob_algorithm”) but this would mean that the substantial locational 

uncertainty in the GLS observations was not accounted for. Since probGLS already simulates the 

uncertainty associated with each track, our approach is to propagate this uncertainty through into the 

kernel density estimation, and hence ensure that it is quantified within the outputs of the spatial mapping. 

We achieve this by applying ’kernelUD’ separately to the simulated tracks within each of the 100 iterations 

of probGLS. This leads to the production of 100 simulated kernel density estimates for each tracked 

colony for each month of the non-breeding season. We then present uncertainty by summarizing across 

these iterations: for example, by calculating the 25% and 75% quantiles across these simulations for each 

point on each map, in order to show the uncertainty in a spatial way. To show the uncertainty in summary 

statistics (e.g. the proportion of the spatial distribution that lies within a particular polygon, such as a 

BDMPS region), we calculate this statistic separately for each iteration, and then, again, summarize by 

looking at quantiles across these simulations (e.g. 2.5% and 97.5% quantiles, which define a 95% 

confidence interval). 

Removing inland locations  

We removed inland distributions predicted by the utilisation distribution (Figure 7), as the majority of 

smoothed locations were located in the sea (95.0% of 318857 points), thus inland distributions were 

mostly a result of the kernel density smooth (and are extremely unlikely for our study species). 
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Figure 7. Distribution (mean number of birds present per day) using 75% kernel density contours 

of common guillemots and razorbills during the non-breeding season (July – March), without 

exclusion of land-based distributions. These maps are representative of adult birds that breed at 

the colonies within our range (i.e. tracked colonies and untracked colonies within 270km of a 

tracked colony; see Figure 6) and should not be used to infer distributions or energetic 

requirements of colonies outside of this range or other age classes. 
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Statistical methods for evaluating maps derived from geolocator data 

Visual summaries 

We produce maps to visualize the GLS utilisation distributions (UDs), and the uncertainty associated with 

these. The bootstrapping approach (of running kernel density estimation on the simulated tracks 

produced by each iteration of probGLS) yields 100 realisations of the UD for each species/colony/month 

combination, so that uncertainty in location could be characterised. Nine tracked colonies for guillemot 

(Farnes was excluded as only 1 tag was retrieved) and nine tracked colonies for razorbill (Colonsay and 

Foula were excluded as 1 tag was retrieved at each colony) were included in the comparison analysis 

(Table 6). All analyses were carried out using R v4.2.1 (R Core Team, 2022) and RStudio release 7872775e, 

2022-07-22. Seasonal maps are calculated and summarized, with the seasons defined as in BDMPS (to 

ensure consistency with the seasonal definitions used in the current apportioning tool). For guillemot, the 

non-breeding season was defined from August to February. Two non-breeding seasons were defined for 

razorbill of migration from August to October and January to March, and winter in November and 

December. UDs (including all bootstrap realisations) were aggregated by species, colony, and season and 

summary statistics of mean, upper and lower 95%CIs were calculated by cell using packages ‘rgdal’ 1.5.32 

(Bivand et al. 2022), ‘raster’ 3.6.3 (Hijmans, 2022a), and ‘terra’ 1.6.17 (Hijmans, 2022b), and ‘stringr’ 1.4.0 

(Wickham, 2019). Maps of mean, lower and upper 95%CI were produced for each population in each 

season, and give a visual representation of the level of uncertainty relative to the magnitude of the mean. 

Comparison against BDMPS tables  

BDMPS is the current main non-breeding season apportioning tool, so it is important to compare the 

spatial distributions that have been derived from GLS data against those used in BDMPS. BDMPS takes a 

regional approach to characterising the spatial distribution, by specifying the proportion of birds from 

each population (individual UK SPAs, together with large-scale aggregations of UK non-SPA populations 

and non-UK populations) that are in each region in each season. BDMPS areas were overlaid onto each 

realisation of the GLS-based maps to apportion estimates in the regions UK North Sea and Channel 

waters, UK Western waters, and Outside of the UK. Proportions were calculated for each area. Summary 

tables were collated by corresponding species, SPAs, and season from the BDMPS tables with estimated 

mean and lower and upper 95%CIs proportions. The proportion of breeding adults visiting each region 

was compared between the GLS-based maps and BDMPS.  

Visualising density using space time cubes  

Visual tools can also be used as a diagnostic tool to explore the assumptions that underpin the GLS-based 

maps. Maps are usually presented as static visualisations, making it difficult to determine whether there 

are temporal shifts in space use, particularly at a fine-scale. Understanding and determining temporal 

variation in distribution is important when considering apportioning criteria because temporal variation 

can be used to characterise uncertainty when apportioning (areas) and also because areas of high 

importance (e.g. foraging grounds) which are visited periodically, may not be shown as areas of high 

usage when mean values are taken over snapshots of time. We developed space time cubes to 

characterise and visualise fine-scale temporal shifts in space use, and thereby to investigate the 

plausibility of the assumption, which underpins the GLS-based maps, that temporal change – aside from 

systematic differences between months/seasons – can safely be ignored. 
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Space time cubes showing how the estimated distribution of the birds changed over time were produced 

for guillemots from two select colonies, Isle of May and Canna, using the methodology of Demšar et al 

(2015) and R code adapted from Demšar (2015). This approach calculates space time densities from a 

set of movement trajectories, which were estimated from the geolocator data using the probGLS R 

package (Merkel 2018). The most probable track was extracted for each bird from each colony, with the 

0.1% most extreme locations in each of the four cardinal directions filtered from the dataset to remove 

some extreme outliers stemming from the substantial uncertainty in the geolocator positions. The tracks 

were split by month to assist with ease of visualisation.  The voxel size (the spatial resolution at which 

the cubes were displayed) was chosen to be 10km to balance the ability to detect relatively fine scale 

changes in spatial utilisation, particularly around the coasts, against the high computational cost of 

estimating densities over a large area.  A Gaussian kernel with a width of 75km was chosen through trial 

and error as this was observed to give what appeared to be an appropriate level of smoothing of the 

densities. More sophisticated methods of choosing this kernel size were considered; however, the 

currently developed methodology only allows a one-dimensional kernel and so this method appeared to 

give the most robust results across colonies.  The calculated densities were then corrected to remove 

any density over land and the densities were reweighted accordingly. The final estimated densities were 

then plotted in ParaView (Ahrens et al 2005) for each combination of month and colony and the images 

were stitched together into gif format. Space time cubes are 3D objects that can be manipulated within 

the software. We chose visualisations of space in two dimensions (x and y) and day of the month in the 

z-axis so that a 3D utilisation distribution cloud represented fine-scale (daily) space usage. 

Evaluating potential to produce distributions for untracked colonies  

In order to calculate apportioning percentages, it will be necessary to derive the spatial distributions 

associated with all colonies, not only those for which GLS data are available. To evaluate the potential to 

extrapolate the GLS-based spatial distributions from tracked colonies to untracked colonies, we extracted 

the locations and colony counts for each UK breeding colony that were included in the Seabird 2000 

census (Mitchell et al. 2004).  We calculated the distance by sea between each tracked colony and Seabird 

2000 site and assigned each site to its nearest tracked colony, since it is likely that colonies that are 

located closer together have more similar distributions and behaviour (Fauchald et al. 2021; Buckingham 

et al. 2022). We visually explored the distribution of distances between tracked colonies and Seabird 2000 

sites.  

Results 

Visual summaries 

From the UDs available, nine colonies of guillemot and nine colonies of razorbill were processed. Paucity 

in underlying data prevented simulating realisations at the remaining colonies. Colony names were 

defined from the locations where geolocator tags were attached to individuals in colonies (Table 6).  

Figs. 8-16 show the estimated population density of adult breeding guillemot with 95%CIs at each tracked 

colonies in the non-breeding season (August-February). Figs. 17-25 show the estimated population 

density of adult breeding razorbill with 95%CIs at each tracked colonies in the non-breeding migration 

seasons (August-October and January-March). Figs. 18-34 show the estimated population density of 

adult breeding razorbill with 95%CIs at each tracked colonies in the non-breeding winter season 
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(November-December). The maps were cropped for visualisation but the full utilisation densities were 

used to calculate the summary statistics for Tables 7, 8, and 9. 

 

Figure 8. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult breeding 

guillemot in the Canna colony during the non-breeding season (Aug-Feb)  

 

 

 

Figure 9. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding guillemot in the Colonsay colony during the non-breeding season (Aug-Feb) 
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Figure 10. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding guillemot in the East Caithness colony during the non-breeding season (Aug-Feb) 

 

 

Figure 11. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding guillemot in the Fair Isle colony during the non-breeding season (Aug-Feb) 
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Figure 12. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding guillemot in the Foula colony during the non-breeding season (Aug-Feb) 

 

 

 

Figure 13. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding guillemot in the Isle of May colony during the non-breeding season (Aug-Feb) 
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Figure 14. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding guillemot in the Puffin Island colony during the non-breeding season (Aug-Feb) 

 

 

 

Figure 15. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding guillemot in the Treshnish colony during the non-breeding season (Aug-Feb) 
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Figure 16. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding guillemot in the Whinnyfold colony during the non-breeding season (Aug-Feb) 

 

 

Figure 17. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Canna colony during the non-breeding migration seasons (Aug-Oct; Jan-

Mar) 
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Figure 18. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the East Caithness colony during the non-breeding migration seasons (Aug-

Oct; Jan-Mar) 

 

 

Figure 19. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Fair Isle colony during the non-breeding migration seasons (Aug-Oct; 

Jan-Mar) 
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Figure 20. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Farnes colony during the non-breeding migration seasons (Aug-Oct; Jan-

Mar) 

 

 

Figure 21. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Isle of May colony during the non-breeding migration seasons (Aug-Oct; 

Jan-Mar) 
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Figure 22. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Orkney colony during the non-breeding migration seasons (Aug-Oct; Jan-

Mar) 

 

 

Figure 23. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Shiants colony during the non-breeding migration seasons (Aug-Oct; Jan-

Mar) 
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Figure 24. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Treshnish colony during the non-breeding migration seasons (Aug-Oct; 

Jan-Mar) 

 

 

Figure 25. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Whinnyfold colony during the non-breeding migration seasons (Aug-Oct; 

Jan-Mar) 

 



 

54 
 

 

Figure 26. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Canna colony during the non-breeding winter seasons (Nov-Dec) 

 

 

Figure 27. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the East Caithness colony during the non-breeding winter seasons (Nov-Dec) 
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Figure 28. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Fair Isle colony during the non-breeding winter seasons (Nov-Dec) 

 

 

Figure 29. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Farnes colony during the non-breeding winter seasons (Nov-Dec) 
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Figure 30. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Isle of May colony during the non-breeding winter seasons (Nov-Dec) 

 

 

Figure 31. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Orkney colony during the non-breeding winter seasons (Nov-Dec) 
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Figure 32. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Shiants colony during the non-breeding winter seasons (Nov-Dec) 

 

 

 

Figure 33. Estimated population density (L) lower 95% CI, (C) mean, (R) upper 95% CI of adult 

breeding razorbill in the Treshnish colony during the non-breeding winter seasons (Nov-Dec) 
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Figure 34. Estimated population density (L) Lower 95% CI, (C) Mean, (R) Upper 95% CI of adult 

breeding razorbill in the Whinnyfold colony during the non-breeding winter seasons (Nov-Dec) 

 

Comparison against BDMPS tables 

Table 7 shows the estimated proportion of adult breeding guillemot in the non-breeding season (August-

February) that visit each region in each season. The estimated proportion of adult breeding razorbill are 

shown in migration seasons (August-October and January-March; Table 8) and winter season (Nov-Dec; 

Table 9) that visit each region in each season, based on the geolocator-based maps and on BDMPS tables. 

The estimated proportion of adult breeding birds are presented with the lower and upper 95% CIs. Region 

is defined as the two UK BDMPS areas (UK North Sea and Channel waters, and UK western waters) plus 

a third category including all estimated density outside of these areas (Outside of UK regions). The 

estimated mean proportions were aggregated over months (Aug-Feb for guillemot; Aug-Oct, Jan-Mar for 

razorbill in migrations; and Nov-Dec for razorbill in winter) and locational uncertainty in the GLS tags was 

captured in the lower and upper 95% CIs. The results from BDMPS calculations are shown as the BDMPS 

population (SPA or non-SPA) that incorporates the colony. 

Concordance between the estimated proportion of adult breeding birds and the BDMPS proportion of 

adults, defined as the BDMPS proportion falling on or between the lower and upper 95%CI of the mean 

estimated proportion, is denoted by a green tick mark () in the last column on the right in each Table (7, 

8, 9). The results for guillemots (Table 7) and razorbill in the migration seasons (Table 8) suggest large 

differences between the GLS-based results and BDMPS results for almost all colonies, for both species, 

even with GLS locational uncertainty accounted for in the apportioning estimates. Table 9 suggests a 

higher level of concordance, with 14 from 27 of the BDMPS calculations falling on or between the lower 

and upper 95% CIs of the estimated mean proportion of razorbill adults in the winter season.  
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Table 7. Estimated proportion of adult breeding guillemot in the non-breeding season (all months 

Aug-Feb) by tracked colony BDMPS area estimated as mean proportion with 95%CIs, calculated 

from the GLS UDs, along with equivalent BDMPS values for the most relevant corresponding 

population in BDMPS. *Designated SPA but not for guillemot features, hence include with non-

SPA populations in BDMPS tables for this species.  denotes instances where the BDMPS 

proportion of adults falls within the estimated 95%CI bounds of the proportion of adults from a 

colony. 

GLS utilisation distributions BDMPS calculations 

Colony Region 

Mean proportion 

of adults from 

this colony in 

each BDMPS 

region (95% CI 

low,upp) 

BDMPS 

population 

relevant to 

colony 

Proportion 

of adults 

from this 

population 

in each 

BDMPS 

region 

Canna 

Outside of UK regions 0.51 (0.45, 0.65) 

Canna and 

Sanday SPA 

0 

UK North Sea and Channel waters 0.11 (0.07, 0.16) 0.05 

UK western waters 0.38 (0.26, 0.47) 0.95 

Colonsay 

Outside of UK regions 0.48 (0.43, 0.51) 
North Colonsay 

and western 

cliffs SPA 

0 

UK North Sea and Channel waters 0.08 (0.05, 0.10) 0 

UK western waters 0.44 (0.41, 0.49) 1.00 

East 

Caithness 

Outside of UK regions 0.55 (0.41, 0.71) 

East Caithness 

Cliffs SPA 

0.30 

UK North Sea and Channel waters 0.40 (0.26, 0.53) 0.70 

UK western waters 0.04 (0.02, 0.07) 0 

Fair Isle 

Outside of UK regions 0.70 (0.60, 0.79) 

Fair Isle SPA 

0.28 

UK North Sea and Channel waters 0.28 (0.19, 0.36) 0.70 

UK western waters 0.02 (0.01, 0.04) 0.02  

Foula 

Outside of UK regions 0.70 (0.54, 0.82) 

Foula SPA 

0.28 

UK North Sea and Channel waters 0.27 (0.15, 0.41) 0.70 

UK western waters 0.03 (0.02, 0.05) 0.02  

Isle of May 

Outside of UK regions 0.45 (0.32, 0.65) 

Forth Islands 

SPA 

0.10 

UK North Sea and Channel waters 0.49 (0.32, 0.62) 0.90 

UK western waters 0.06 (0.03, 0.09) 0 

Puffin Island Outside of UK regions 0.53 (0.43, 0.61) 0.02 
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UK North Sea and Channel waters 0.25 (0.09, 0.41) UK West Coast 

non-SPA 

populations* 

0.03 

UK western waters 0.22 (0.13, 0.33) 0.95 

Treshnish 

Outside of UK regions 0.54 (0.48, 0.57) 
UK West Coast 

non-SPA 

populations* 

0.02 

UK North Sea and Channel waters 0.08 (0.04, 0.11) 0.03 

UK western waters 0.39 (0.33, 0.46) 0.95 

Whinnyfold 

Outside of UK regions 0.51 (0.39, 0.65) 

Buchan Ness to 

Collieston Coast 

0.20 

UK North Sea and Channel waters 0.46 (0.33, 0.57) 0.80 

UK western waters 0.03 (0.02, 0.05) 0 
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Table 8. Estimated proportion of adult breeding razorbill in the non-breeding migration seasons 

(Aug-Oct; Jan-Mar) by tracked colony BDMPS area estimated as mean proportion with 95%CIs, 

calculated from the GLS UDs, along with equivalent BDMPS values for the most relevant 

corresponding population in BDMPS. *Designated SPA but not for razorbill features, hence 

included with non-SPA populations in BDMPS tables for this species.  denotes instances where 

the BDMPS proportion of adults falls within the estimated 95%CI bounds of the proportion of 

adults from a colony. 

GLS utilisation distributions BDMPS calculations 

Colony Region 

Mean proportion of 

adults from this 

colony in each 

BDMPS region (95% 

CI low,upp) 

BDMPS 

population 

relevant to 

colony 

Proportion of 

adults from this 

population in 

each BDMPS 

region 

Canna 

Outside of UK regions 0.49 (0.34, 0.66) 
UK Western 

non-SPA 

colonies* 

0 

UK North Sea and Channel waters 0.26 (0.17, 0.37) 0.02 

UK western waters 0.25 (0.16, 0.43) 0.98 

East 

Caithness 

Outside of UK regions 0.53 (0.21, 0.77) 

East Caithness 

Cliffs SPA  

0 

UK North Sea and Channel waters 0.42 (0.20, 0.71) 1.00 

UK western waters 0.06 (0.02, 0.10) 0 

Fair Isle 

Outside of UK regions 0.60 (0.22, 0.76) 

Fair Isle SPA 

0 

UK North Sea and Channel waters 0.35 (0.20, 0.71) 0.95 

UK western waters 0.05 (0.02, 0.09) 0.05  

Farnes 

Outside of UK regions 0.48 (0.17, 0.72) UK North Sea 

non-SPA 

colonies* 

 

0 

UK North Sea and Channel waters 0.48 (0.27, 0.75) 1.00 

UK western waters 0.04 (0, 0.14) 0.00 

Isle of May 

Outside of UK regions 0.45 (0.15, 0.76) Forth Islands 

SPA 

  

0 

UK North Sea and Channel waters 0.50 (0.22, 0.78) 1.00 

UK western waters 0.05 (0.01, 0.11) 0 

Orkney 

Outside of UK regions 0.51 (0.20, 0.72) 
UK North Sea 

non-SPA 

colonies*  

0 

UK North Sea and Channel waters 0.41 (0.23, 0.70) 1.00 

UK western waters 0.08 (0.04, 0.11) 0 

Shiants Outside of UK regions 0.45 (0.27, 0.63) 0 
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UK North Sea and Channel waters 0.29 (0.15, 0.42)  Shiant Isles 

SPA 

  

0.02 

UK western waters 
0.26 (0.12, 0.40) 

0.98 

Treshnish 

Outside of UK regions 0.47 (0.32, 0.68) 
UK Western 

non-SPA 

colonies* 

0 

UK North Sea and Channel waters 0.23 (0.15, 0.29) 0.02 

UK western waters 0.30 (0.16, 0.45) 0.98 

Whinnyfold 

Outside of UK regions 0.49 (0.17, 0.78) 
UK North Sea 

non-SPA 

colonies*  

0 

UK North Sea and Channel waters 0.46 (0.19, 0.74) 1.00 

UK western waters 0.05 (0.01, 0.11) 0 

  



 

63 
 

Table 9. Estimated proportion of adult breeding razorbill in the winter season (Nov-Dec) by tracked 

colony BDMPS area estimated as mean proportion with 95%CIs, calculated from the GLS UDs, 

along with equivalent BDMPS values for the most relevant corresponding population in BDMPS. 

*Designated SPA but not for razorbill features, hence included with non-SPA populations in 

BDMPS tables for this species.  denotes instances where the BDMPS proportion of adults falls 

within the estimated 95%CI bounds of the proportion of adults from a colony. 

GLS utilisation distributions BDMPS calculations 

Colony Region 

Mean proportion of 

adults from this 

colony in each 

BDMPS region (95% 

CI low,upp) 

BDMPS 

population 

relevant to 

colony 

Proportion of 

adults from this 

population in 

each BDMPS 

region 

Canna 

Outside of UK regions 0.48 (0.44, 0.51) 
UK Western 

non-SPA 

colonies* 

0.60 

UK North Sea and Channel waters 0.35 (0.31, 0.39) 0.10 

UK western waters 0.17 (0.14, 0.20) 0.30 

East 

Caithness 

Outside of UK regions 0.66 (0.60, 0.72) 

East Caithness 

Cliffs SPA  

0.69  

UK North Sea and Channel waters 0.33 (0.28, 0.37) 0.30  

UK western waters 0.02 (0.01, 0.03) 0.01  

Fair Isle 

Outside of UK regions 0.63 (0.57, 0.69) 

Fair Isle SPA 

0.69 

UK North Sea and Channel waters 0.34 (0.27, 0.42) 0.30  

UK western waters 0.03 (0.01, 0.05) 0.01  

Farnes 

Outside of UK regions 0.59 (0.48, 0.70) UK North Sea 

non-SPA 

colonies* 

 

0.69  

UK North Sea and Channel waters 0.40 (0.29, 0.52) 0.30  

UK western waters 0 (0, 0.02) 0.01  

Isle of May 

Outside of UK regions 0.55 (0.45, 0.65) Forth Islands 

SPA 

  

0.69 

UK North Sea and Channel waters 0.43 (0.34, 0.52) 0.30 

UK western waters 0.02 (0.01, 0.03) 0.01  

Orkney 

Outside of UK regions 0.53 (0.45, 0.61) 
UK North Sea 

non-SPA 

colonies*  

0.69 

UK North Sea and Channel waters 0.39 (0.32, 0.46) 0.30 

UK western waters 0.08 (0.05, 0.11) 0.01 

Shiants 
Outside of UK regions 0.46 (0.41, 0.52)  Shiant Isles 

SPA 

0.50  

UK North Sea and Channel waters 0.29 (0.24, 0.32) 0.10 
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UK western waters 0.25 (0.22, 0.29)   0.40 

Treshnish 

Outside of UK regions 0.39 (0.34, 0.45) 
UK Western 

non-SPA 

colonies* 

0.60 

UK North Sea and Channel waters 0.27 (0.23, 0.31) 0.10 

UK western waters 0.34 (0.29, 0.38) 0.30  

Whinnyfold 

Outside of UK regions 0.64 (0.57, 0.71) 
UK North Sea 

non-SPA 

colonies*  

0.69  

UK North Sea and Channel waters 0.35 (0.28, 0.41) 0.30  

UK western waters 0.01 (0, 0.03) 0.01  

 

Visualizing density using space time cubes  

Figs. 35 and 36 show 3D (longitude, latitude, day of month) mean monthly densities of guillemot from the 

Canna and Isle of May colonies from July – March. The figures are also available as GIFs in the 

accompanying files (Canna_Guillemots_GIF and IoM_Guillemots_GIF). 

There is a noticeable difference between the guillemots from the Isle of May and those from Canna in 

terms of the consistency and stability of their estimated distribution throughout the non-breeding season. 

The guillemots from the Isle of May are predominantly restricted to the North Sea and the Norwegian Sea 

for the majority of the non-breeding season with a gradual drift out from the coast with increased time 

since the breeding season and a tendency to move slightly northwards through time – though a small 

group of birds do appear to travel to the English channel from December to February.   

The Canna guillemots are similarly condensed around the colony early in the non-breeding season before 

gradually dispersing outwards; however, a small proportion were observed to travel as far as the north 

coast of Norway by as early as August. These birds which have travelled to Norway’s north coast appear 

to return before the end of the breeding season, at which point a relatively large group travel south to the 

Bay of Biscay, predominantly during December and January. By March the majority of the population is 

congregated in a relatively small area off the north coast of Scotland.   

Thus, it appears that the assumption of a static distribution throughout the non-breeding season may be 

more appropriate for some colonies than others, with guillemots from Canna acting as a good example 

of a population which shows substantial variability in its distribution throughout the non-breeding months. 
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Figure 35. Space time cube visualisations showing guillemot mean usage by month from the Canna colony. 

The 3D usage represents longitude and latitude in the x and y axis and day of the month in the z-axis. 
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Figure 36. Space time cube visualisations showing guillemot mean usage by month from the Isle of May 

colony. The 3D usage represents longitude and latitude in the x and y axis and day of the month in the 

z-axis. 
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Potential to produce distributions for untracked colonies  

The results of summarizing the distribution of distances between tracked and untracked colonies suggest 

that a reasonable compromise may be to assume that untracked colonies that are less than 270km from 

a tracked colony can be linked to GLS-based distributions from tracked colonies (Figures 37 and 38): the 

balance here is between ensuring that the maximum number of colonies can be capturing using the GLS-

based maps (since they have substantial advantages over the existing apportioning approach) and not 

extrapolating these maps unreasonably far beyond the colonies that were used to create them. 94% and 

92% of all UK adult breeding guillemots and razorbills, respectively, are within colonies that lie within 

270km of a tracked colony (Fig. 6; Error! Reference source not found.Table 10). The intention is that the 

threshold of 270km may be used as a default threshold in the apportioning tool (beyond which BDMPS 

will be used in place of the GLS-based maps), but that users will be able to modify this threshold within 

the tool. 

 

 

Figure 37. Histograms showing the distance between each Seabird 2000 site and the nearest tracked 

colony for common guillemots. The vertical blue dotted line indicates 270km.  
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Figure 38. Histograms showing the distance between each Seabird 2000 site and the nearest tracked 

colony for razorbills. The vertical blue dotted line indicates 270km. 
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Table 10. The number of breeding common guillemots and razorbills represented by each tracked 

colony. Untracked colonies were assigned to the nearest colony with tracking data within 270km for 

each analysis. Population sizes were based on Seabird 2000 count data for each colony, multiplied by 

0.67 to estimate the number of pairs and multiplied by 2 to achieve number breeding adults (Mitchell et 

al. 2004).  

 

  
Number of individuals 

represented 

Tracked colony Guillemot Razorbill 

Canna 521215 8276 

Colonsay 278200 - 

East Caithness 696277 24450 

Fair Isle 213949 18994 

Farnes - 18610 

Foula 262704 - 

Isle of May 227203 16977 

Orkney - 38022 

Puffin Island 86438 - 

Shiants - 66953 

Treshnish 88058 115914 

Whinnyfold 299787 36058 

Total 2673831 344254 

Percentage of adult 

UK breeding 

population (%) 

94.06 91.82 

 

Discussion 

The use of geolocator-based models in apportioning 

The geolocator-based models are colony-specific, and produced estimated spatial distributions 

associated with colonies that have GLS tracking data, together with a quantification of the uncertainty 

associated with these distributions. However, non-breeding season spatial distributions of seabirds are 

much less straightforward to model in relation to explanatory variables than breeding season 

distributions, because the central place foraging constraint in the breeding season means that the 

distribution will necessarily be closely related to distance to colony. This, and the fact that the much higher 

levels of uncertainty in GLS tracking data than in GPS tracking data would also make it difficult to detect 
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habitat associations, explain why colony-specific models have been used for the analysis of GLS tracking 

data, whereas habitat association models that can be generalized beyond the colonies whose data was 

used in fitting them have been used in analysis of breeding season GPS tracking data (e.g. analysis of 

lesser black-backed gulls in this project, and Wakefield et al., 2017). 

Apportioning, however, relies upon knowing the spatial distributions associated with every colony, not 

only those colonies with tracking data. In order for the geolocator-based models to be used for 

apportioning it was therefore necessary to either be able to use these models to produce spatial 

distributions for colonies without GLS tracking data, or else to use an alternative approach for colonies 

without GLS tracking data. The only obvious alternative approach to use in this context was BDMPS. Since 

there are limitations to BDMPS, the approach that we use is to extrapolate the geolocator-based models 

out to colonies without GLS tracking data in situations where these colonies are within a certain distance 

threshold of a colony with GLS tracking data, and to use BDMPS in situations where the distance to the 

nearest colony with GLS tracking data exceeded this threshold. This will therefore provide a hierarchical 

approach in the apportioning tool being developed in WP4, in which the best available method is used for 

each colony. We propose that the tool will allow users to specify this distance threshold, allowing users 

to investigate the sensitivity of the results to the choice of distance threshold. The choice of the distance 

threshold represents a trade-off between the caveats associated with extrapolating the GLS maps to 

untracked colonies and the caveats associated with BDMPS. The tool will show a map that illustrates the 

impact of varying the distance threshold on the set of colonies for which GLS-based distributions will be 

used. 

The spatial distributions of each untracked colony will be based on a weighted average of the spatial 

distributions associated with tracked colonies that lie within the distance threshold of this colony; we 

propose to use a simple linear weighting, so that: 

      Spatial distribution of untracked colony = SUM over all tracked colonies of (weight of tracked colony * 

spatial distribution of tracked colony) 

[Equation 1] 

where the weight of each tracked colony relative to the untracked colony is assumed to be proportional 

to 

      (distance threshold - distance from untracked colony to tracked colony) / (distance threshold)  

[Equation 2] 

Tracked colonies that are closer to the untracked colony will therefore be given more weight than those 

that are further away. 

We anticipate that for the apportioning tool colonies will be based on Seabird 2000 sub-sites, and the size 

of these colonies based on Seabird 2000 counts, for consistency with the apportioning approaches used 

in the breeding season. The use of Seabird 2000 ensures that all colonies are included, and that counts 

for them were taken in a comparable period. One challenge, however, is that BDMPS uses SPAs, and 

aggregates non-SPA colonies into just two very broad regional groups for guillemot and razorbill: North 

Sea and Western / West Coast. In areas where the tool defaults to BDMPS it will therefore need to use 

these definitions rather than the Seabird 2000 colony definitions. This will require some adjustments – 

e.g. the population size of the non-SPA populations in BDMPS will need to be reduced to remove those 

non-SPA populations that lie in the areas where the geolocator-based maps are being used for 

apportioning. 

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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A key advantage of the approach of using GLS-based distributions in the areas for which data are 

available, and using BDMPS elsewhere, is that this hybrid approach provides a straightforward 

mechanism for non-UK populations to be incorporated into the apportioning calculations: these will 

simply be accounted for as they are currently are within BDMPS, using the same estimates for non-UK 

populations as are currently used in BDMPS. There would be potential in future to exploit GLS data from 

outside the UK to provide new empirical estimates of non-breeding season distributions for non-UK 

colonies, but until such estimates are available the hybrid approach will ensure that non-UK populations 

continue to be accounted for within apportioning. 

The tool will account for uncertainty in the GLS maps, for uncertainty in the location of the boundary 

between BDMPS regions (capturing the idea that the location of the boundary was never intended to be 

precise, but to represent a broad separation of two distinct regions), and for uncertainty in the allocation 

of tracked colonies to untracked colonies (e.g. by using the weights from Equation 2 as probabilities within 

a simulation-based approach). 

Given the variations in spatial distribution between months (e.g. as shown by the space-time cube 

visualisations), and the challenges in producing biological definitions of seasons, the tool will allow users 

a high level of flexibility in specifying the time period over which apportioning will be performed. In 

particular, we intend that users will be able to use the tool to either apportion for seasons, whose start 

and end months they can specify, or for individual months. This will futureproof the tool against any 

possible future changes in the way in which assessments define seasons, and against any potential future 

switch from apportioning at a seasonal level to apportioning at a monthly level. 

The structure of the tool is proposed to be similar to that used for current breeding season apportioning 

tools: users will have an option to either select “map mode” (in which case apportioning probabilities will 

be mapped, with uncertainty, for a selected colony), or “footprint mode” (in which case users will upload 

a footprint, and the apportioning probabilities will be estimated, with uncertainty, for all colonies within 

this footprint). Unlike in breeding season tools, however, the intention is that users will be able to select 

the month or season that they wish to consider, since the GLS-based maps are monthly. It is anticipated 

that users will also be able to select the distance threshold, beyond which BDMPS should be used, and to 

select the level of uncertainty they assume exists in the boundary between BDMPS regions. 

Wider interpretations 

The difference between BDMPS and GLS-derived distributions could have arisen from the different scales 

at which they have been estimated, with BDMPS presented at very broad scales. Another possibility is 

that information on colony provenance in BDMPS was derived primarily from ringing recoveries, which is 

the largely coastal distribution of birds found dead, in the limited availability of relevant geolocation data 

at the time that the work was undertaken. The marked difference in the comparison between the three 

categories (guillemot non-breeding, razorbill migration and razorbill winter) was instructive – the greater 

accordance between methods in the latter may be due to the high level of aggregation of different 

razorbills in midwinter, in contrast to guillemots (Buckingham et al. 2022).  As such, the reliability of 

BDMPS as a tool for winter apportioning is likely to be context dependent.  It should also be noted that 

the hard boundaries that were placed between BDMPS in order to undertake the calculations required in 

the comparison, as outlined in the last section, may not be appropriate if those boundaries were originally 

considered to be more diffuse. 

The GLS data were based on a study period of 2017-21, comprising four non-breeding seasons but with a 

particular emphasis on 2017-18 and 2018-9 for both species and 2019-20 for guillemots. As such, the 
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data are unlikely to fully capture interannual variation in winter distribution. Further data collection at the 

study colonies and elsewhere would be useful in factoring in interannual variation more completely, and 

the level of variation could also be explored more comprehensively in longer term studies, though most 

of these have taken placed outside the UK, with the exception of the Isle of May. The representativeness 

of the study colonies of the larger suite of untracked colonies is untested, and warrants further 

investigation. However, a more urgent requirement is to plug gaps in data from regions in the UK with no 

GLS data, such as areas in western Scotland and Wales and the large colony at Flamborough Head. 

Our analysis identified a particular challenge with geolocation data during the post-breeding and pre-

breeding periods, when a large proportion of birds are in close association with colonies. At these times, 

the locations are likely to be more greatly affected by shading at dawn and dusk associated with colony 

attendance, which can affect the estimated time of dawn and/or dusk and, in turn, location estimates. As 

such, we would advise that distributions at this time are treated with more caution than at other times of 

the non-breeding season. However, it is important to clarify that guillemots may attend the colony in all 

months of the non-breeding season to a greater or lesser extent after completing their moult i.e. any 

month from October through to the breeding season (Bennett et al. 2022). As such, further work is 

required that considers the potential effect of colony attendance outside the breeding season on 

geolocation data. 

4. Conclusions 

This workpackage has focused upon providing new apportioning methods, in two key situations in which 

there was previously only one method available – summer apportioning for lesser-black backed gulls and 

winter apportioning for guillemot and razorbill - and in evaluating the spatial distributions that underpin 

the new methods against those that underpin the existing methods.  

The results suggest that there are some broad similarities between the results obtained using a simple 

inverse distance squared decay rule (as used in the SNH/NatureScot Apportioning Tool) and those 

obtained using summer GPS-based maps for lesser black-backed gulls, reflecting similar results in Butler 

et al. (2020) for the other four species for which summer GPS-based maps have been used for 

apportioning. This broad similarity presumably reflects the dominance of distance to colony in describing 

the summer distributions of breeding seabirds, given the central place foraging constraint. The results did 

reveal differences in the spatial distributions obtained using the two methods, however, and identified 

properties of the SNH/NatureScot Apportioning Tool that will be explored further in WP4. 

In contrast, the GLS-based maps for the non-breeding season for guillemots and razorbill imply 

proportions of time spent in BDMPS regions that differ substantially from those used in BDMPS. The 

larger differences between methods in the non-breeding season are to be expected, given that there is 

less likely to be any single, readily quantifiable, dominant factor in determining non-breeding season 

distributions. Further evaluation is more challenging here, since BDMPS only considers broad-scale 

regions. 

Within WP4 the spatial distributions that have been produced and evaluated here will be converted into 

apportioning estimates. The conversion into apportioning estimates will require some additional, 

relatively simple, steps: for lesser black-backed gulls the application of a colony-specific adjustment to 

account for proportion of time spent foraging on land, and for guillemot and razorbill the use of a hybrid 

approach that combines GLS-based spatial distributions (where appropriate) with BDMPS (for colonies 

that lie far from the nearest colony with GLS data). The apportioning estimates obtained using different 

https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP4%20report.pdf
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methods will also be evaluated against each other, complementing the evaluation here of the colony-

specific spatial distributions that underpin these estimates, and the different apportioning methods will 

be integrated into a user-friendly tool. This tool will also incorporate a RAG dashboard, that provides a 

straightforward way to identify the appropriateness of each tool.  

The WP4 report will also outline the process that will be needed to update the tool as and when new data 

and model outputs become available in future. In general, statistical modelling of GPS and GLS tracking 

data involves relatively sophisticated modelling, and requires both biological and statistical judgement, 

and this process cannot therefore usefully be completely automated, so future updating of the models to 

incorporate new data will be a relatively substantial piece of analytical work. The process for updating the 

tool to incorporate new model outputs will, however, be made as clear and streamlined as possible, 

minimizing the amount of work required to integrate new model outputs into the tool. 
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7. Appendices 

 

Table S1. Total number of fixes available per colony (split by ‘onshore’ / ‘offshore’) after filtering 

GPS data to common rates of 5, 30, 60 and 180 minutes combined across years, to assess potential 

sample sizes for inclusion in the modelling. 

Colony / filter rate 5 minute 30 minute 60 minute 180 minutes 

BA (Barrow)  3376 / 37 18676 / 189 23939 / 261 16772 / 200 

BE (Belfast)    11653 / 29 6162 / 11 

CR (Craigleith)   2497 / 1212 1726 / 1073 948 / 847 

FI (Fidra)   1846 / 14 4094 / 215 2523 / 107 

MA (Isle of May)  285698 / 35743 99123 / 7109 51335 / 3724 27158 / 1621 

ON (Orford Ness)  96122 / 24013 169642 / 13058 87221/ 6766 30599 / 2349 

RI (Ribble)  27843 / 71 41358 / 35 42046 / 48 29658 / 44 

SK (Skokholm)  394955 / 75953 236871 / 19165 124097 / 11076 42951 / 3746 

WA (Walney)  690225 / 34107 353998 / 8780 200494 / 5732 79685 / 2119 

Total no. onshore 1498219 924011 546605 236451 

Total no. offshore 169926 49562 28924 11044 
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Table S2. Results of the process used to determine the order to add in environmental covariates 

to the model. The best-fitting model from the first stage of modelling had each environmental 

covariate added singly to examine the increase in weighted Bhattacharyya affinity (𝑩𝑨̅̅ ̅̅ ) score. 

Shown below are each of the 10 environmental covariates considered, ordered by the size of 

improvement in 𝑩𝑨̅̅ ̅̅  score for models with each environmental covariate singly. Models which have 

an increase in weighted BA score (∆𝑩𝑨̅̅ ̅̅  is positive) are highlighted in bold. 

 Name of environmental covariate ∆𝑩𝑨̅̅ ̅̅  𝑩𝑨̅̅ ̅̅  

- Model without environmental covariates - 0.370 

1 Depth + 0.012 0.382 

10 Net primary production + 0.011 0.381 

6 Potential energy anomaly (PEA) + 0.011 0.381 

9 Thermal front gradient density (TFGD) + 0.006 0.376 

3 Distance to coast + 0.003 0.373 

8 Sea surface temperature (SST) - 0.006 0.364 

7 Proportion of time during which water column stratified -0.007 0.363 

2 Seabed slope -0.043 0.327 

4 Proportion of gravel in sediment -0.105 0.265 

5 Ratio of sand:mud in sediment -0.121 0.249 
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Examples of extracted environmental covariates  

 

 

Figure S1. Seabed topography (depth) ETOP01  

 

 

Figure S2. Original sediment shapes with local view in the Irish Sea from the Digimap BGS service  
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(a) Gravel       (b) Sand:mud ratio 

 

Figure S3. Rescaled and rasterised seabed sediment maps for (a) gravel proportion and (b) 

sand:mud ratio, using the methods and scaling approach as described in Wakefield et al. (2017) 

 

 

Figure S4. Example Chlorophyll data for August 2020 daily average on the original milligram scale for 

August 2020 alpha-chlorophyll as a composite image across daily datasets 
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(a) 23rd June 2020 example one day  PEA  (b) Composite PEA J/m3^0.5 for Mar-June 2020 

 

Figure S5. Example of one day slice in 2020, and a further composite for the March-June 2020 

period, depending on how the rasters will be amalgamated for analysis 

 

 

(a) 23rd June 2020 example one day  (m)  (b) Composite proportional time stratified 

 

Figure S6. Example of the stratification layer, showing a single day slice of the raster for 23rd June 

2020 and then a composite as per Wakefield et al. (2017) for a March-June 2020 proportional of 

days stratified (MLD < max water depth); for the latter the sea relief dataset was used. 
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Figure S7. Example SST datasets for 2020, here plotted for January 2020 as a composite image 

across daily datasets 

 

 

 

 

 

 

 

(a)      (b). 

       

Figure S8. Example front data processing png front data; (a) example single front map for 2020-

06-04 to 2020-06-10; (b) translated scale (Fcomp) following Miller and Christodoulou (2014) 
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Figure S9. The proportion of the utilisation distribution (UD) predicted to be within the EEZ for 

each colony (each dot is one of the modelled colonies). The proportion of the UD within the EEZ 

is shown for both of the models considered: a model with log(depth) as a covariate (y-axis), and a 

model with no environmental covariates (x-axis). 
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