

Introduction

This leaflet provides a number of useful conversion factors to help you calculate energy consumption in common units and to work out the greenhouse gas emissions associated with energy use.

Calculating your energy use and carbon emissions can be useful for monitoring energy use internally within a business, and also for public reporting of energy consumption and carbon emissions.

This updated version is based on data published by the Department for Energy Security and Net Zero (DESNZ) in 2023.

Greenhouse gas conversions

The energy conversion factors given in this leaflet are quoted as kilograms carbon dioxide equivalent (kgCO2e) per unit of fuel.

The use of fuels leads to emissions of carbon dioxide (CO2) and small quantities of other greenhouse gases—including methane (CH4) and nitrous oxide (N2O). For a given quantity of a gas, the equivalent quantity of CO2 that would be needed to give the same greenhouse effect can be calculated using its 'global warming potential'. This quantity is quoted in units of kilograms carbon dioxide equivalent (kgCO2e).

The greenhouse gas conversion factor comprises the effect of the CO2, CH4 and N2O combined – this is quoted as kgCO2e per unit of fuel consumed.

The energy conversion factors given in this leaflet are quoted as total direct kgCO2e per unit of fuel. Direct emissions are those emitted at the point of use of a fuel – or at the point of generation for electricity. conversion factors 2023 spreadsheet

The factors in this guide do not account for indirect emissions, for example emissions associated with the extraction of natural gas, refining of oil etc. For conversion factors that include indirect emissions see the Greenhouse gas reporting: conversion factors 2023 spreadsheet.

Conversion factors for energy units

From	to kWh
therms	29.307
Btu	2.931x10 ⁻⁴
MI	0.2778
toe	1.163x10⁴

Btu = British thermal unit;

MJ = Megajoule;

toe = tonnes of equivalent oil; Kcal = kilo calorie

Example

Conversion of 100,000 Btu to kWh: 100,000 Btu = 100,000 x 2.931 X 10⁻⁴ kWh

= 29.31kWh

Common prefixes

The following prefixes are used for multiples of joules, watts and watt-hours:

Kilo (k) = 10^3 ; mega (M) = 10^6 ; giga (G) = 10^9 ; tera (T) = 10^{12} ; peta (P) = 10^{15}

= 29.31kWh

Energy conversion factors

The factors given below are taken from UK Government greenhouse gas conversion factors for company reporting, published in June 2023.

Table 1 Energy conversion factors

Fuel ¹	Units	kgCO₂e per unit
UK Grid electricity ²	kWh	0.20707
Renewable electricity ³	See footnote ³	See footnote ³
	kWh	0.18293
Natural gas	therms	5.36115
	cubic meters	2.03839
LPG	kWh	0.21450
	therms	6.28637
	litres	1.55713
	tonnes	3,228.89
Gas oil	kWh	0.26813
	litres	2.75857
Fuel oil	tonnes	3,229.20
	kWh	0.26816

Units	kgCO₂e per unit
tonnes	3,165.04
kWh	0.24677
tonnes	3015.65
kWh	0.23908
litres	2.51206
tonnes	2,806.66
kWh	0.22166
litres	2.09747
tonnes	2,396.48
kWh	0.32262
tonnes	51.56192
kWh	0.01074
	tonnes kWh tonnes kWh litres tonnes kWh litres tonnes kWh tonnes

¹ Factors given for all fuels are on a gross calorific value (CV) basis, in common with most energy billing.

²This figure represents electricity generated (scope 2 under the location-based method). Scope 3 emissions should be reported separately.

³ For electricity purchased on a 'green tariff', the grid electricity factor above should be used to report under the location-based method of the GHG Protocol Corporate Standard. The Standard requires organisations to also report scope 2 emissions using the market-based method. The relevant factor under this method will be specific to the product supplied by a given electricity supplier. If there are any instances where a supplier specific emission factor cannot be obtained then the country specific residual grid emission factor should be applied.

⁴ Standard fuel bought from a local filling station (across the board forecourt fuel typically contains biofuel content).

⁵ Conversion factors include the emissions of methane and nitrous oxide that occur during combustion.

Passenger transport conversion factors

Download editable spreadsheet

Table 2 Petrol and diesel cars

Car size	Units	kgCO₂e per unit	Car size	Units	kgCO₂e per unit
Creative to 4.4 lites not not	km	0.1408	Small, up to 1.7 litre diesel	km	0.1393
Small up to 1.4 litre petrol	miles	0.2266		miles	0.2242
Medium 1.4-2.0 litre petrol	km	0.1782	Medium, 1.7-2.0 litre diesel	km	0.1672
Mediam 1.4-2.0 little petrol	miles	0.2868		miles	0.2690
Large, over 2.0 litre petrol	km	0.2722	Large, over 2.0 litre diesel	km	0.2086
Large, over 2.0 little petrol	miles	0.4381		miles	0.3357
Average petrol cor	km	0.1639	Average diesel car	km	0.1698
Average petrol car	miles	0.2638		miles	0.2733

CONVERSION FACTORS

Download editable spreadsheet

Table 3 Bus, rail and air⁶ travel

Mode of transport	Units ⁷	kgCO₂e per unit
Regular taxi	pkm	0.14861
Average local bus	pkm	0.10215
Coach	pkm	0.02718
International rail (Eurostar)	pkm	0.00446
National rail	pkm	0.03546
Light rail and tram	pkm	0.0286
Underground	pkm	0.0278
Long haul international flight to/from UK	pkm	0.26128
Long haul international flight to/from non-UK	pkm	0.1758
Short haul international flight to/from UK	pkm	0.18592
Domestic flight	pkm	0.27258

⁶ The air travel emission factors include a distance uplift factor of 8%, to take into account non-direct routes and delays/circling and also includes an uplift factor for radiative forcing. Department for Transport data on passenger cabin class split by flight length (domestic, short haul, long haul) is now used to give better average passenger emissions for each flight length.

The conversion factors presented here are just a sample of those published by DESNZ. For a more comprehensive set of factors, and full guidance notes for their use, visit gov.uk.

⁷ pkm stands for passenger kilometres. The associated kgCO2e figures are calculated by taking the total emissions figure for the vehicle and dividing by the average number of passengers.

Heat content of fuels

The default gross calorific values given below can be used when fuel-specific values are not available from your energy supplier. Gross values include the energy needed to evaporate the water in the fuel, and that formed during the combustion process. In the tables below we provide the gross values, in line with those usually provided by the energy suppliers in the UK. Net values exclude this energy.

Table 4 Gross calorific values for solid fuels

Fuel ¹	kWh/tonne
Coal (industrial)	7,428
Wood pellets	5,193
Straw	4,375

Table 5 Gross calorific values for liquid fuels

Mode of transport	kWh/tonne	litres/tonne	kWh/litre
Fuel oil	12,090	1,028	11.85
LPG	13,707	1,883	7.28
Diesel	12,614	1,201	10.51
Gas oil	12,579	1,187	10.60
Burning oil	12,825	1,245	10.30
Petrol	12,660	1,338	9.46

Download editable spreadsheet

Table 6 Gross calorific values for gaseous fuels

Gaseous fuels	kWh/tonne	litres/tonne	kWh/m³
Natural gas	14,009	2,257,160	11.00

Go online to get more

The Carbon Trust provides a range of tools, services and information to help you implement energy and carbon saving measures, no matter what your level of experience.

Carbon footprinting guide

How to calculate the carbon footprint of your organisation, product or service, and the benefits of doing so.

https://www.carbontrust.com/resources/carbon-footprintingguide

Tools, guides and reports

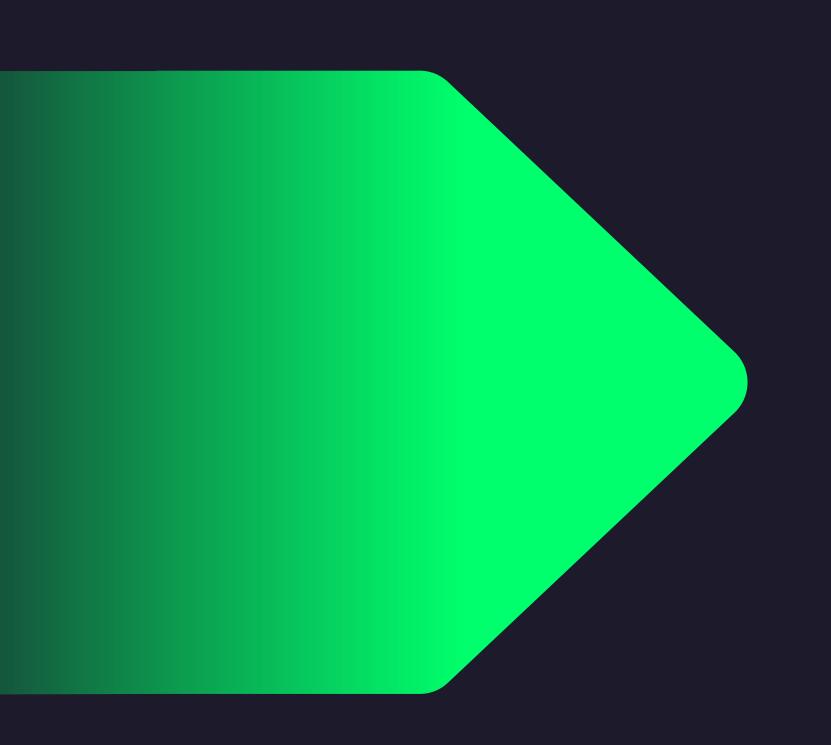
Publications and tools for energy saving and carbon reduction across a range of sectors and technologies.

https://www.carbontrust.com/resources

Impact stories

We have helped thousands of businesses and public sector organisations improve the way they work with our expertise across corporate sustainability, assurance and labelling, Net Zero targets and more. Explore some of the different ways we support clients on their sustainability journey in our impact stories and programmes below.

https://www.carbontrust.com/our-work-and-impact/impactstories


Product carbon footprinting

Verified product footprinting allows you to differentiate your product and brand, widen your product's distribution and increase sales. We have certified over 25,000 individual product footprints to international standards, many of which display our Footprint Label.

http://www.carbontrust.com/carbonlabel

carbontrust.com

+44 (0) 20 7170 7000

Whilst reasonable steps have been taken to ensure that the information contained within this publication is correct, the authors, the Carbon Trust, its agents, contractors and sub-contractors give no warranty and make no representation as to its accuracy and accept no liability for any errors or omissions. Any trademarks, service marks or logos used in this publication, and copyright in it, are the property of the Carbon Trust. Nothing in this publication shall be construed as granting any licence or right to use or reproduce any of the trademarks, service marks, logos, copyright or any proprietary information in any way without the Carbon Trust's prior written permission. The Carbon Trust enforces infringements of its intellectual property rights to the full extent permitted by law.

The Carbon Trust is a company limited by guarantee and registered in England and Wales under Company number 4190230 with its Registered Office at: 5th Floor, Arbor, 255 Blackfriars Rd, London SE1 9AX

© The Carbon Trust 2023. All rights reserved.

Published in the UK: 2024